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Abstract. Recommendation algorithms and multi-class classifiers can support
users of social bookmarking systems in assigning tags to their bookmarks. Con-
tent based recommenders are the usual approach for facing the coldstart prob-
lem, i. e., when a bookmark is uploaded for the first time and no information from
other users can be exploited. In this paper, we evaluate several recommendation
algorithms in a cold-start scenario on a large real-world dataset.

1 Introduction

Social bookmarking systems allow web surfers to store and manage their bookmarks
on a central server and not as usual within the browser. They allow thus to access book-
marks simultaneously from different computers and to sharethem with other users.
The user has the possibility to assign freely chosen keywords, so-calledtags to each
resource, which can be used to structure and retrieve the stored bookmarks. To support
the user in tagging, different types of recommendation algorithms are typically utilized
by bookmarking systems.

The recommendation of tags can also be considered as a classification problem,
since we can consider each tag as the name of a class. More precisely, we talk about a
multi-label classificationproblem [25], since users typically assign more than one tag
to a resource. The number of classes is typically very high asfolksonomy users are
allowed to choose from as many different tags as they like.

There are two typical approaches to the recommendation problem: content-based
approaches and collaborative filtering approaches [3]. While the former rely solely on
the content of the documents, the latter take into account the behavior of similar users.
Social bookmarking systems are an ideal scenario for the collaborative filtering ap-
proach, as the similarity of users can be measured by comparing their tagging behavior.
Nevertheless the so-calledcold start problemalso occurs in social bookmarking sys-
tems: When a resource is tagged for the first time by some user, all other users – and
in particular those who are similar to him – do not yield any recommendation about
which tags to use. Therefore, content-based recommendations also have their use in
social bookmarking systems.

In this paper, we study different content-based recommenders, and compare them
on a real-world dataset – a crawl of the delicious bookmarking system.3 The main con-
3 http://delicious.com/
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tribution is a comparison of state of the art recommenders, the adaption of classifiers to
this problem and a demonstration that content based recommenders are able to gener-
alize and to make predictions for new web pages. The paper complements our work on
collaborative filtering approaches [14]. A more detailed discussion of its findings can
be found in the bachelor thesis [13] of Jens Illig.

The paper is organized as follows. In Section 2, we introducefolksonomies, the
underlying data structure of social bookmarking systems. In Section 3, we discuss re-
lated work. Section 4 introduces the problem definition and describes the classifiers that
we used. Section 5 describes the data set that we used, and thepreprocessing that we
performed. We discuss our findings in Section 6 and future work in Section 7.

2 Social Resource Sharing and Folksonomies

The central data structure of a social bookmarking system isa folksonomy. It consists
of the assignments of tags to resources by some users. The following definition, taken
from [12], formalizes this idea:4

Definition 1 (Folksonomy).A folksonomy is a tupleF := (U, T,R, Y ) where

– U is a finite set of users,
– T is a finite set of tags,
– R is a finite set of resources, and
– Y ⊆ U×T×R is a ternary relation between users, tags, and resources. Anelement

(u, t, r) of Y is called atag assignment (TAS)and represents the fact that useru
has assigned tagt to resourcer.

The set of tags that useru has assigned to resourcer is given byTur := {t ∈ T |
(u, t, r) ∈ Y }. If Tur is non-empty, then we call the tuple(u, Tur, r) thepostof useru
for resourcer.

Note that the setT of tags may grow over time, as there are no pre-defined catch-
words – the user is free to come up with arbitrary new tags. A resource is usually
labeled by multiple users and tags may be assigned multiple times to the same resource
by different users.

For content-based recommendations, we will abstract from the user dimension.
Therefore, we introduce the set ofbinary tag assignments (BTAS)as projectionI of
Y on the tag and resource dimensions:I := {(t, r) ∈ T ×R | ∃u ∈ U : (u, t, r) ∈ Y )}.
If Tr := {t ∈ T | (t, r) ∈ I} is non-empty, then we call the tuple(Tr, r) thebpostfor
resourcer.

3 Related Work

General overviews on the rather young area of folksonomy systems and their strengths
and weaknesses are given in [11,18,19]. In [20], Mika definesa model of semantic-
social networks for extracting lightweight ontologies from delicious. Recently, work on

4 In [12], we have additionally introduced a user-specific sub-tag/super-tag relation, which we
will ignore for the purpose of this paper.
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more specialized topics, such as structure mining on folksonomies – e. g. to visualize
trends [8] and patterns [23] in users’ tagging behavior – as well as ranking of folkson-
omy contents [12], analyzing the semiotic dynamics of the tagging vocabulary [5], or
the dynamics and semantics [10] have been presented.

The literature concerning the problem of tag recommendations in folksonomies is
still sparse. The existent approaches usually lay in the collaborative filtering and infor-
mation retrieval areas. In [21], [4], and [14], algorithms for tag recommendations are
devised based on content-based filtering techniques. Xu et al. [29] introduce a collabora-
tive tag suggestion approach based on the HITS algorithm [16]. A goodness measure for
tags, derived from collective user authorities, is iteratively adjusted by a reward-penalty
algorithm. Benz et al. [2] introduce a collaborative approach for bookmark classifica-
tion based on a combination of nearest-neighbor-classifiers. There, a keyword recom-
mender plays the role of a collaborative tag recommender, but it is just a component
of the overall algorithm, and therefore there is no information about its effectiveness
alone. Basile et al. [1] suggest an architecture for an intelligent recommender tag sys-
tem. In [9,28,27], the problem of tag-aware resource recommendations is investigated.
The standard tag recommenders, in practice, are services that provide the most-popular
tags used for a particular resource. This is usually done by means of tag clouds where
the most frequent used tags are depicted in a larger font or otherwise emphasized.

First work which utilized machine learning algorithms to predict tags based on the
content is reported in [25]. The reported results for four real world dataset are very
promising but limited to only two models, a new gaussian process and an SVM model.
Results for a vector space model and a poisson mixture model are reported in [26]. The
results are similar to those we report here for other machinelearning methods.

Most recently, the ECML/PKDD 2008 Discovery Challenge5 has addressed the
problem of tag recommendations in folksonomies. Most of them relies on a combi-
nation of good preprocessing, some external knowledge sources and a good heuristic to
choose the right set of tags. No machine learning approach was used.

4 Tag Recommendations as Text Classification Problem

4.1 Definition of the Problem

In [14], we have studied tag recommendations based on a collaborative filtering ap-
proach. But in a dynamic setting, such as our web bookmarkingscenario, new web
pages show up frequently. When a new page is bookmarked for thefirst time, the only
information about it is its full text. Our aim is to learn tag recommendations that are
based on this information.

We formalize the problem as follows. LetF := (U, T,R, Y ) be a folksonomy,
where the setR of resources consists of web pages. The web pages are modeledby the
bag of wordsapproach, i. e., a mappingvec:R → R

V , whereV is the set of all6 words
occurring in at least one document, and wherevec(r)v is the number of occurrences of
wordv on web pager. We applied tf-idf weighting to that mapping.7

5 http://www.kde.cs.uni-kassel.de/ws/rsdc08/6 In this paper, we did not apply stopword
removal. 7 We also made the same classification experiments without tf-idf weighting but
the best results of every classifier family were achieved with tf-idf.
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For the evaluation, we assume that the folksonomyF is split into a training and a
test set, i. e., into:8

Ftrain = (Utrain, Ttrain, Rtrain, Ytrain) and Ftest = (Utest, Ttest, Rtest, Ytest)

Theproblem of learning tag recommendations, consists in finding, based on the infor-
mation inFtrain and for givenn ∈ N, a functionϕn: RV → Pn(T ),9 such that, for all
resourcesr in Ftest, ϕn(vec(r)) is a good approximation for the tags ofr. As usual, we
will measure the quality of the approximation with precision and recall, see Section 6.1.

4.2 Classifiers

In order to solve the problem of finding a concrete mappingϕn, we applied different
machine learning algorithms, which are suitable for the text classification task (cf.[24]).
In the experiments, we compared the following models: SVM, multinominal näıve
Bayes, Rocchio,k-NN, and – as a simple baseline – the most popular tags for the
document. All models provide at the end a functionΦ̆¬t

t : RV → R that is returning, for
~x ∈ R

V , a confidence valuĕΦ¬t
t (~x) describing how confident the model is in assigning

tagt to a resourcer ∈ R with vec(r) = ~x. The recommendationϕn(r) then consists of
thosen tagst ∈ T having the highest values̆Φ¬t

t (vec(r)).
The functionsΦ̆¬t

t are either computed directly – this approach is calledt-vs-¬t or
one-vs-all – or calculated from multiple confidence values of pairwise tag comparisons
Φ̆y

x whereΦ̆y
x(vec(r)) is the confidence in the decision to prefer tagx instead of tag

y for resourcer. The latter approach is called one-vs-one. For all learningalgorithms
exceptk-Nearest-Neighbor where only one-vs-all has been applied,we experimented
both with one-vs-all and one-vs-one.

For one-vs-one, we evaluated two different variants for calculating a single confi-
dence function̆Φ¬t

t from all confidence functions{Φ̆y
x | x ∈ Ttrain ∧ y ∈ Ttrain ∧ x 6=

y ∧ (x = t ∨ y = t)}. The first uses simple boolean vote adding and requires hard
classifications for every tag-vs-tag pair to increase a votecounter for the winning tag of
the pair. Confidence threshold zero has been used to get this hard classification which is
motivated by the fact that most of the tested classifiers are directed to output confidence
values with positive or negative values for indicating preference oftag in favor of¬tag
respectively tagx in favor of tagy. A confidence value exactly equal to zero leads to no
vote for any of the two tags in the one-vs-one pair.
The other tested variant of defininğΦ¬t

t uses confidence adding:

Φ̆¬t
t : RV → R; ~x 7→

∑

t′∈Ttrain\{t}

Φ̆t′

t (~x) − Φ̆t
t′(~x) (1)

The algorithms follow the same principle for computing the functionsΦ̆¬t
t and the

functionsΦ̆y
x: Let 0 and 1 stand for¬t andt, resp., in the first case, and for tagx and tag

y, resp., in the second case. Given a setVtrain = {vec(r) | r ∈ Rtrain} and a function
Φ0

1: Vtrain → {0, 1}, all of these algorithms find a function̆Φ0
1: R

V → R which maps

8 The specific splitting approach that we used for this paper is described in Section 5.2.
9 Pn(T ) stands for the set of all subsets ofT with exactlyn elements.
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to real valued confidence values indicating how much more suitable decision 1 is in
favor of decision 0 for a feature vector inRV regarding an internal model learned from
training examples.

SVM. Support Vector Machines are classifiers that separate the feature hyperspace of
some dimension|V | into two subspaces divided by a|V | − 1 dimensional hyperplane.
Thereby SVMs also try to find a hyperplane position that provides a broad ‘safety’
space around the hyperplane instead of simply focussing on asmall training error rate.

As used for example in [22], two parameters,C+ ∈ R and C− ∈ R define
the relative importance of consistency with positive and negative training examples
against safety space maximization. For the experiments with the SVM machine learn-
ing method, a marginally modified implementation of the linear C-SVM algorithm from
the library libSVM [7] has been used that, instead of hard classifications, outputs its in-
ternal hyperplane distance as confidence values. We experimented both with the default
settingC = C+ = C− = 1 and a second variant using

C− =
|{r ∈ Rtrain | Φ0

1(vec(r)) = 0}|

2 · |{r ∈ Rtrain | Φ0
1(vec(r)) = 1}|

together with C+ = 2 · C−2

This asymmetric setting (which is marked as C= +/− in the evaluation section) is
motivated by the observation that a negative resource/tag example can either be a ‘real’
negative example (i. e., the tag indeed does not fit to the resource), or a ‘missed’ pos-
itive example (i. e., the tag semantically belongs to the resource, but has not yet been
assigned explicitly to it by any of the users of the system). Thus, the cost of misclassi-
fying a positive training example (C+) should be higher than the cost of misclassifying
a negative example. However, settingC+ too high in relation toC− may lead to a triv-
ial positive classifier. The above given settings ofC− andC+ have been determined
on the basis of multiple small manually constructed two-dimensional test datasets. Ex-
periments have been conducted with and without scaling all document feature vectors
to an Euclidean length of one before training and classification (denoted bylnorm and
nolnorm, resp., in the evaluation section).

Multinomial Na ı̈ve Bayes.This classification applied to tag categorization calculates
a probability estimateP (t|r) for the observation of tagt given an observation of a
resourcer. We used the log odds ratio based on a multinomial model with document
model based parameter estimation as described in [15], which leads to10

Φ̆¬t
t (vec(r)) = log

(

P (t|r)

P (¬t|r)

)

= log

(

∏

v∈r

(

P (v|t)

P (v|¬t)

)vec(r)v

·
P (t)

P (¬t)

)

(2)

with P (v|t) =
∑

r′∈Rtrain

P (r′|t) · P (v|r′) . (3)

We estimatedP (r′|t), P (v|r′) and P (t) as well as¬t variants thereof directly
from the relative TAS and term occurrence frequencies in thetraining corpus. To avoid

10 We usev ∈ r here forv ∈ {v′ | v′ ∈ V ∧ vec(r)
v
′ > 0}.
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P (v|t) = 0 as a factor in the right term of Equation 2, a virtual postp⋆ = {u⋆} ×
Ttrain × {r⋆} has been added to the training dataset.r⋆ is made up of one occurrence
of every feature known from the training dataset plus a virtual wildcard feature. During
classification, each new feature not known from the trainingdataset has been treated
equally to that wildcard feature.

Rocchio. This centroid based method builds class representation vectors that are com-
pared to resource representation vectors in order to find some similarity measure as the
confidence output value. As presented for example in [24], wecalculated positive and
negative centroid vectors for the training classes 0 and 1 asfollows

~c 1 =
1

|R1
train|

∑

rtrain∈R1

train

vec(rtrain) ~c 0 =
1

|R0
train|

∑

rtrain∈R0

train

vec(rtrain)

With these centroids we definĕΦ as follows

Φ̆0
1(vec(r)) = cos

(

�

(

β
~c 1

‖~c 1‖
− γ

~c 0

‖~c 0‖
, vec(r)

))

Classifier setups have been evaluated withβ = 1 in combinations with bothγ = 0 and
γ = 1. Additionally we experimented with TAS weighted centroids, but yielded slightly
lower effectiveness. Furthermore, our experiments with Euclidean distance always led
to effectiveness below the baseline.

k-NN. We have run thek-Nearest-Neighbor method considering the 30 nearest neigh-
bor documents and using a confidence calculation scheme taken from [24], that is

Φ̆0
1(vec(r)) =

∑

rtrain∈MostSimk

fsim (vec(r), vec(rtrain)) · Θ0
1(rtrain)

Θ0
1(rtrain) =

{

1 , if Φ0
1(vec(rtrain)) = 1

0 , otherwise

Here,MostSimk ⊆ Rtrain is the set of those training instances that are among thek
most similar instances compared by similarity measuresim: RV × R

V → R to the
argument instancer which is to be classified. We usedsim(x, y) = cos (�(x, y)). For
the similarity weighting functionfsim, bothfsim(x, y) = 1 andfsim(x, y) = sim(x, y)
have been evaluated. Additionally, we experimented with analternative definition of
Θ0

1(rtrain) which also takes into account how many users assigned a tag toa resource
in the training set:

Θ¬t
t (rtrain) =







log (|{u ∈ Utrain | (u, t, rtrain) ∈ Ytrain}| + 2) , if Φ¬t
t = t

− log (|TAS¬t
train(rtrain)|) , if Φ¬t

t = ¬t and|TAS¬t
train(rtrain)| ≥ 1

0 , otherwise

where TAS¬t
train(rtrain) = {(u, t′) ∈ Utrain×(Ttrain\{t}) | (u, t′, rtrain) ∈ Ytrain} .

The logarithm is used for damping and+2 is used to slightly linearize the logarithm in
order to weight positive neighbors strongly even with few TAS.
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5 Evaluation Setting

The dataset used for the experiments is a crawl of the social bookmarking system de-
licious downloaded between 2005-07-27 and 2005-07-30 [12]. It consists of75, 242
users,533, 191 tags and3, 158, 297 resources, related by in total17, 362, 212 tag as-
signments. The full text of all3, 158, 297 resources had also been downloaded in 2005.
Unfortunately, the protocol response headers of the resource downloads were lost. For
that reason it was at first unclear how many resources were error code pages and which
resources were correctly transferred resources. There wasalso no information about the
MIME type of the resources, the encoding, or the language in case of text resources.

5.1 Preprocessing

Based on MIME type detections of the magic byte sequence algorithm from the “data
and metadata getting” Java frameworkAperture11 in version 1.0.1-beta, all resources for
which the detected MIME type neither started with ”text” norcontained the substring
”html” have been filtered out. In order to escape all character set problematics, the
document corpus has been restricted to 7 bit ASCII encoded documents which have
been detected by application of thejchardet12 library, which is a Java port of the Mozilla
universal charset detector [17]. All pages estimated beingerroneous in terms of a non
HTTP 2xx response have been pruned. Such documents were identified by a SVM
trained by a set of1, 271 successfully and1, 000 unsuccessfully re-crawled resources.
A ten fold cross-validation of this classifier showed an eleven point average precision
of 0.96.

Primarily because of the tokenization problem with naturaltext of some languages,
but also with respect to possible comparable future stemming experiments on the same
dataset, only English text documents were evaluated. Language guessing was done by
making use of the n-gram method [6] applied via the characterbased part of thengramj
library13. Whenever documents contained explicit information about their language, we
doubled the score of that language.

The pruning steps (pruning of error pages, non-text/html text, non-English docu-
ments and non-7-bit ASCII) reduced our initial folksonomy.We removed then all users
and all resources that were no longer related to a resource. We obtained in total65, 177
users,299, 305 tags, and1, 113, 405 resources.

Figure 1 shows the frequency distribution of the tags. Each cross is representing one
tag. The right-most cross (which is located on thex-axis) says that there is exactly one
(= 100) tag that occurs in35, 307 BTAS, while the left-most cross (which is located
on they-axis) says that there are158, 183 different tags that occur in only one BTAS
each. Since such rare tags are very difficult to predict, and since we had a variety of
algorithms and parameter settings that we wanted to evaluate, we had to reduce the data
further. Hence, we restricted the set of tags to the 15 most popular tags, in order to
reduce the complexity of the learning problem.14 The remaining folksonomyF consists
11 http://aperture.sourceforge.net/ 12 http://jchardet.sourceforge.net/
13 http://ngramj.sourceforge.net/ 14 Faced with the limitation of our computing ma-
chinery (an Opteron PC with8 × 2 GHz and32 GB main memory), we had to decide whether
to include more different algorithms, or to run a more extensive comparison of fewer algorithms.
We decided to go for the former.
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Fig. 1.Tag frequencies for all resources. The fact that the data points almost form a line
hints at the presence of a so-calledpower lawdistribution, which is typical for many
human-driven activities.

of 65, 177 users,15 tags, and1, 113, 405 resources. Users and resources that are not
related to any of the 15 most frequent tags have not been deleted, as they were used as
negative training data.

The remaining preprocessing steps generate the vector space representationvec:R →
R

V of the full text of the web pages. For (X)HTML documents, a parser has been used
that passes through all non-markup as long as it is located inside of one of the HTML-
tagshead or body and outside of all the HTML-tagsembed, object, style,
applet, andscript. The parser has been configured to filter out documents con-
taining theframeset HTML-tag.

Two types of document features have been extracted from textdocuments during
the build of bag of words feature vector representations. The first type of feature is to-
kenized text with terms and character sequences. A tokenizer has been implemented
which distinguishes between numbers, terms, special character sequences, and single
interesting special characters. All of these tokens are found independently of one an-
other, but because of the definitions of the distinguished token types, no token occur-
rence is accounted more than once. Single character occurrences may be accounted
in multiple features. All tokens were lowercased before frequency counting. For the
other feature type, occurrences of the HTML-tagsimg, a, code, p, object,
applet, embed, form, cite, dfn, q, samp have been counted separately
as features. We did not apply stopword removal.

Then the vector space representation of the documents has been built, as described
in Section 4.1.
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5.2 Training and Test Datasets

We follow the typical evaluation setting for supervised learning tasks by splitting the
available data, i. e., the folksonomyF that resulted from the preprocessing as described
above, into a training and a test data set. The split is based on the date of the posts.
All posts between 2003-10-01 and 2004-08-26 have been used for the training dataset
Ftrain, resulting in4, 236 users,

For the set of test documents, we considered all10, 602 documents that occurred
in posts between 2004-08-27 and the end of 2004-09-05. From these, we removed all
2, 417 documents which also occurred in posts from the training set. By removing all
documents that are in both the training and the test dataset,we avoid the problem of
evaluating our approach on already seen data, which would bias the evaluation. All
TAS after 2004-08-27 (including those after 2004-09-05) referring to the remaining
8, 185 test documents have been used to find a testset of BTAS. (By notlimiting to
posts before 2004-09-05, we extend the set of BTAS and can thus use the maximal
available information for the evaluation.) From the remaining documents, we removed
all documents that were not tagged by any of the15 most frequent tags. As an additional
attempt to reduce the problem of suitable recommended tags that have not been assigned
in our dataset, we limited the set to only those documents with at least ten TAS in
the whole dataset. Again we removed unconnected users. The resulting test setFtest

contains40, 632 users,15 tags, and1, 926 resources.

6 Experiments

6.1 Evaluation Settings

We evaluated all the recommenders on the test datasetFtest. Since all recommenda-
tions were non-personalised, we projected out the user dimension ofFtest – i. e., we
considered the setItest ⊆ Ttest × Rtest of BTAS only.

For evaluating recommenderϕ, we computed, for each resourcer in Rtest and for
eachi between 1 and 5, a recommendationϕi(r), recommending thus between one and
five tags. For each of these combinations, precision and recall were computed:

precision(ϕi, r) =
|ϕi(r) ∩ Tr|

|ϕi(r)|
recall(ϕi, r) =

|ϕi(r) ∩ Tr|

|Tr|

For each recommender and for eachi = 1, . . . , 5, we averaged precision and recall
over all resources inRtest:

precision(ϕi) =
1

|Rtest|

∑

r∈Rtest

precision(ϕi, r)

recall(ϕi) =
1

|Rtest|

∑

r∈Rtest

recall(ϕi, r)
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Fig. 2.Tf-idf precision and recall for different parameter settings of the SVM, averaged
over all test documents not occuring in the training set thathave at least 10 TAS in the
whole dataset.

6.2 Comparison of the Classifiers

All classifiers were evaluated with several parameter settings, which, due to space re-
strictions, cannot be presented all. For more details, see the bachelor thesis [13] of Jens
Illig.

Figure 2 shows the results for some settings of the SVM. The five recommenda-
tionsϕ1, . . . , ϕ5 of each setting are plotted together in one curve. The left-most node of
each curve represents the one-element-recommendationϕ1, while the right-most node
represents the five-element-recommendationϕ5. As one can see, all curves are mono-
tonically decreasing. This shows that, for all recommenders, recall is growing with an
increasing number of recommendations while precision is falling.

The figure shows that the best settings for the SVM are those with C=1 parame-
terization. A possible explanation is that our dynamicallycalculated parameterization
(called “C+/-” Figure 2) with its higher C values tends to overfit. This is supported by
our observation that in another evaluation that is based solely on repeatedly posted doc-
uments, these classifiers show higher effectiveness than the corresponding C=1 vari-
ants. With the better working C=1 SVM configuration, Figure 2also shows that the
boolean adding one-vs-one variant is most effective at higher recall levels, while, with
confidence adding, the first item can be recommended more precisely. This might be
explained by real-valued confidence values of the confidenceadding classifier variant
where, in contrast, boolean adding uses only integer vote counts as confidence values,
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Fig. 3. Precision and recall of the best recommenders of different classifier types, av-
eraged over all test documents that have at least 10 TAS in thewhole dataset. All use
tf-idf values.

which, as we observed, often leads to many tag suggestions with equal confidence out-
put so that these cannot be ordered any further. Without length-normalization, SVM
effectiveness is in most cases lower, especially for one-vs-all classifiers. The best non
length-normalized variant is boolean adding one-vs-one with “C+/-”, but it only has
around0.02 more precision than the C=1 variant at similar recall levels.

An overall comparison of all approaches is shown in Figure 3.For sake of read-
ability, we did again not display all parameter settings, but only one or two of those
that performed best for each classifier type. In the diagram,one can see that the SVM
with one-vs-one learning is clearly more effective than theother classifiers. One-vs-one
is also the best choice for the Rocchio method. Thereby, a confidence adding variant
without TAS weighted centroids turned out to be most effective. However, our experi-
ments showed that the worst cosine based Rocchio classifier is only about0.04 precision
score points less effective at similar recall levels. Most clearly, those variants withγ = 0
were the less effective among them. Another well functioning classifier is log-odds ratio
multinomial Näıve Bayes. For that classifier type, length normalization has turned out
to be counterproductive for tag recommendation. 30-NN is clearly less effective. The
best 30-NN variants use our TAS weighting scheme, which seems to increase precision
by ca. 0.04. Similarity weighting also slightly increased precision. As expected, simple
most popular tag recommendation is obviously less effective than almost all content
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based methods – only the highly ineffective Rocchio methodswith Euclidean distance
(not displayed in Figure 3) are worse.

7 Conclusion and Outlook

In this paper, we evaluated the effectiveness of multiple text classification methods and
variants applied to a scenario that is compatible with the common text classification
evaluation practice of disjoint training and test scenarios but still represents a realistic
and pure cold start tag recommender evaluation scenario. Thereby, we identified a prob-
lem in the open world characteristic of the dataset and developed an evaluation scheme
that addresses it.

Some algorithms have been slightly modified in various ways to make use of tag
assignment frequencies by multiple users. Improvements bythese extensions have been
detected for the case of a TAS weighted 30-Nearest-Neighbors algorithm. Nevertheless,
we found that an one-vs-one SVM variant on length normalizeddocument feature vec-
tors is the most effective of all evaluated classifiers. We could show that folksonomy tag
assignments can be learned by application of machine learning techniques to address
the cold start problem of collaborative recommender systems.

In the future, our experiments can be extended to other classifier algorithms, like for
example boosting, decision trees, and rule based learners.Also transductive approaches
seem promising in terms of the open world problem. Other possible extensions include
stemming, term space reduction, different feature reweighting methods, and classifica-
tion of documents in multiple languages.

Another open task is to evaluate and compare the effectiveness of content based and
collaborative approaches (on a test set of already posted resources). The next step is then
to develop combined approaches that rely on both the high effectiveness of collaborative
methods on documents with known tag assignments and the strengths of content based
approaches to overcome the cold start problem.
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