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P.le A. Moro, 2, 00185 Roma, Italy

‡Institute for Scientific Interchange (ISI), Torino, Italy
§ciro.cattuto@roma1.infn.it

Received 27 September 2007
Revised 15 March 2008

A distributed classification paradigm known as collaborative tagging has been widely
adopted in new Web applications designed to manage and share online resources.
Users of these applications organize resources (Web pages, digital photographs, aca-
demic papers) by associating with them freely chosen text labels, or tags. Here we
leverage the social aspects of collaborative tagging and introduce a notion of resource
distance based on the collective tagging activity of users. We collect data from a pop-
ular system and perform experiments showing that our definition of distance can be
used to build a weighted network of resources with a detectable community struc-
ture. We show that this community structure clearly exposes the semantic relations
among resources. The communities of resources that we observe are a genuinely emer-
gent feature, resulting from the uncoordinated activity of a large number of users,
and their detection paves the way for mapping emergent semantics in social tagging
systems.

Keywords: Folksonomy; collaborative tagging; emergent semantics; online communities;

Web 2.0.

1. Introduction

Information systems on the World Wide Web have been increasing in size and
complexity to the point where they presently exhibit features typically attributed to
bona fide complex systems. They display rich, high-level behaviors that are causally
connected in nontrivial ways to the dynamics of their interacting elementary parts.
Because of this, concepts and formal tools from the science of complex systems
can play an important role in understanding the structure and dynamics of such
systems.
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Fig. 1. The basic unit of information in a folksonomy, i.e. a post, is shown as it appears in
the interface of bibsonomy.org, a social collaborative tagging system for bookmarks and scientific
references. At the top, the title of the resource (a Web page) is shown, followed by its own subtitle.
Then the list of tags associated by the user hotho is displayed. Other pieces of information are:
the number of other users who inserted the same resource in the system, and the date and time
of insertion of the present post.

This study focuses on the recently established paradigm of collaborative tag-
ging [1, 2]. In Web applications like del.icio.us,a Flickrb and BibSonomy,c users
organize diverse resources — ranging from Web pages to academic papers and pho-
tographs — with semantically meaningful information in the form of text labels,
or tags. Tags are freely chosen and users associate resources with them in a totally
uncoordinated fashion. Nevertheless, the tagging activity of each user is globally vis-
ible to the user community and the tagging process develops genuine social aspects
and complex interactions [3,4], eventually leading to a bottom-up categorization of
resources shared throughout the user community. The open-ended set of tags used
within the system — commonly referred to as “folksonomy” — can be used as a
sort of semantic map to navigate the contents of the system itself.

In Fig. 1 a single annotation example (called a “post”) is shown as it appears
in the interface of the bibsonomy.org system.

Our work is based on experimental data from one of the largest and most popular
collaborative tagging systems, del.icio.us, currently used by over a million users to
manage and share their collections of Web bookmarks.

The main point of our work is neither to present a new spectral community
detection algorithm, nor to report a large data set analysis. Rather, we want to
show that, choosing the right projection and the right weighting procedure, we
can produce a weighted, undirected network of resources from the full tripartite
folksonomy network, which embeds a meaningful social classification of resources.
This is especially surprising, considering that users annotate resources in a very
anarchic, uncoordinated and noisy way.

In Sec. 2 we describe the experimental data we collected. In Sec. 3 we introduce
a notion of resource distance based on the collective activity of users. Based on that,
we set up an experiment using actual data from del.icio.us and we build a weighted
network of resources. In Sec. 4 we show that spectral methods from complex network
theory can be used to detect clusters of resources in the above network, and we

ahttp://del.icio.us
bhttp://flickr.com
chttp://www.bibsonomy.org
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characterize those clusters in terms of user tags, exposing semantics. Finally, Sec. 5
gives an overview of our results and points to directions for future work.

2. Experimental Data

Our analysis focuses on del.icio.us for several reasons: (i) it was the first system
to deploy the ideas of collaborative tagging on a large scale, so it has acquired
a paradigmatic character is the natural starting point for any quantitative study;
(ii) it has a large user community and contains a huge amount of raw data on the
structure and dynamics of a folksonomy; (iii) it is a broad folksonomy [5], i.e. single
tag associations by different users retain their identity and can be individually
retrieved. This allows us to measure the number of times that a given tag X was
associated with a specific resource as the number (fX) of users who established that
resource–tag association (see also Fig. 2). That is to say, a broad folksonomy has a
natural notion of weight for tag associations, which is based on social agreement.
On studying del.icio.us we adopt a resource-centric view of the system, i.e. we
investigate the emergent correspondence between a given resource and the tags
that all users associate with it. We factor out the detailed identity of the users
and deal only with the set of tags associated by the user community with a given
resource, as well as with the frequencies of occurrence of those tags in the context
of the resource.

Fig. 2. The collective activity of users associates with each resource a weighted set of tags,

where the weight of a tag is given by its frequency of occurrence in the context of a resource.
The weighted set of tags is commonly visualized by using a graphical device called a tag cloud :
the most frequent tags associated with a given resource are shown, and the font size of each
tag is proportional to the logarithm of its frequency of occurrence. Our definition of similar-
ity wR1,R2 [Eq. (1)] measures the weighted overlap between the tag clouds associated with the
resources R1 and R2. Tags marked in red belong to T1 ∩ T2, the set of tags shared by the two
resources.
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To collect data, we used a Web crawler that connects to del.icio.us and navigates
the system’s interface as an ordinary user would do, extracting tagging metadata
and storing it for further postprocessing. Our client connects to del.icio.us and
downloads the Web pages associated with a given set of resources, using an HTML
parser to extract the tagging information from the page. The system allows one to
get the complete set of annotations associated with each resource. The data used
for the present analysis were retrieved in October 2006.

3. Resource Networks from Collective Tagging Patterns

In a collaborative tagging system, a set of resources defines a “semantic space”
that is explored and mapped by a community of users, as they bookmark and
tag those resources [6]. We want to investigate whether the tagging activity is
actually structuring the space of resources in a semantically meaningful way, i.e.
whether partitions or subsets of resources emerge, associated with tagging patterns
that point to well-defined meanings, areas of interest or topics. These groups of
resources could also identify, in principle, communities of users sharing the same
view of resources, or the same emergent vocabulary.

In order to gain insight into the above problem, we set up an experiment using
del.icio.us as a data source. We want to stress here that, since the aim of the work
is to investigate whether an emergent community structure exists in folksonomy
data, we are not concerned with the completeness of the dataset used. Rather, we
decided to perform the experiment on the following subset: we selected two popular
tags that appear to be semantically unrelated (design and politics), and for each of
them we extracted from del.icio.us a set of 200 randomly chosen resources (we took
the first 200 returned by the system, representing the most recently introduced by
users). For each resource, we collected the complete set of annotations, i.e. all the
tag assignments relative to that resource. The corresponding dataset used for this
experiment thus consists of 400 resources: half of them have been associated with
the tag design, while the other half have been tagged with politics. The idea is to
construct a dataset containing at least two semantically well-separated subsets. For
each resource in the dataset, the entire tagging history was retrieved from del.icio.us,
so that all the tag associations involving the chosen 400 resources are known. In
other words, we know how the entire user community of del.icio.us “categorized”
the selected resources in terms of freely chosen tags, with no biases due to data
collection.

To uncover structures linked to specific tagging patterns, we introduce a notion
of similarity between resources based on how those resources were tagged by the
user community. For each resource, we define a tag cloud as the weighted set of
tags that have been used to bookmark that resource, where the weight of tag t is
its frequency of occurrence ft in the context of that resource (Fig. 2). We want to
formalize the intuitive idea that two resources are similar if the corresponding tag
clouds have a high degree of overlap. Given two generic resources R1 and R2, and
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the corresponding sets of tags T1 and T2, a natural measure of tag cloud overlap
would be the standard set overlap given by the cardinality of the intersection set
T1 ∩ T2 divided by the cardinality of the union set T1 ∪ T2. This simple measure,
however, has a major fault: since no notion of tag weight (frequency) is used, it is
not sensitive to the social aspects of tagging encoded in tag frequencies (and, as
such, it is also vulnerable to tagging noise, i.e. errant, strange, incorrect or even
malicious tagging, or spamming [12–14]).

To overcome this limitation we adopt a term frequency–inverse document fre-
quency (TF–IDF) weighting procedure [7]. The TF–IDF weight is commonly used
in information retrieval and text mining, and represents a statistical measure used
to evaluate how specific a term is in identifying a document belonging to a collection
of documents. The importance of a term increases proportionally to the number of
times the term appears in the document, and inversely proportionally to the global
frequency of the same term in the document collection.

We denote with f1
t and f2

t the frequencies of occurrence of tag t in T1 and T2,
respectively, and with ft the global frequency of tag t, i.e. the total number of times
that tag t was used in association with all the resources under study.

In the spirit of the TF–IDF techniques, we normalize the frequencies of tags
by their global frequencies. When a tag is shared by the resources R1 and R2, it
has two different frequencies, f1

t in the context of R1 and f2
t in the context of R2.

When performing the intersection between tag clouds, we use the lowest of those
frequencies to define the weight of tag t in the intersection set T1∩T2, while we use
the highest of those frequencies when weighting the contribution of the same tag
in the union set T1 ∪ T2. More precisely, we define the similarity between R1 and
R2 as

wR1,R2 =

∑
t∈T1∩T2

min(f1
t ,f2

t )
ft

∑
t∈T1∩T2

max(f1
t ,f2

t )
ft

+
∑

t∈T1−T2

f1
t

ft
+

∑
t∈T2−T1

f2
t

ft

. (1)

The above expression is an extension of the simple measure of set overlap, where the
numerator is a weighted form of set intersection and the denominator is a weighted
form of set union. By definition, 0 ≤ wR1,R2 ≤ 1. Of course, the above definition is
just one of the possible similarity measures that can be employed, and the validation
of the measure we introduce here is left to the results obtained by using it, as shown
in Sec. 4. The similarity matrix introduced above can be regarded as the adjacency
matrix of a weighted network of resources [8], where wR1,R2 is the strength of the
edge connecting nodes R1 and R2.

Figure 3 shows the distribution of similarities (edge strengths in the weighted
network) among all the pairs of resources, for three different sets of resources: the
subset of resources sharing the tag design, the subset of resources sharing the tag
politics and the union of those two subsets. Notice that the global frequency ft of a
given tag t depends on the set of resources chosen for the analysis. From the plot it
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Fig. 3. Probability distributions of link strengths. The logarithmically binned histogram of link
strengths for all pairs of resources within a given set is displayed for three sets of resources: empty
squares correspond to resources tagged with design, filled squares correspond to resources tagged
with politics, and blue circles correspond to the union of those two sets. It is important to observe
that strength values span several orders of magnitude, so that a nonlinear function of link strengths
becomes necessary in order to capture the full dynamic range of strength values.

is evident that weights span a wide range of values and the logarithm of the weight
is best-suited to appreciating the full range of strength values.

4. Community Structure of the Resource Network

In order to investigate the existence of underlying structures in the set of resources,
we proceed as follows. First, we transform the similarity matrix wR1,R2 in order to
compress the dynamic range of strength values. Since the logarithmic scale gives a
good representation of the strength variability (Fig. 3), but has divergence problems
in the neighborhood of zero, we consider a matrix where each element is raised to a
small (arbitrary) power, γ = 0.1. Thus, the similarity matrix w′ which we will use
in the following is defined as

w′
R1,R2

= (wR1,R2)
γ . (2)

Note that the similarity metric 2 is similar to that introduced in Refs. 15 and 16
for a clustering experiment in an ontology of Web pages, and was inspired by
information theory arguments.

Figure 4 displays the similarity matrix (link strengths of the weighted sim-
ilarity network) between pairs of resources w′

R1,R2
for the full set of 400

resources. The resources are randomly ordered and no structures are visible in this
representation.
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Fig. 4. Matrix w′ of link strengths [Eq. (2)] for the entire set of 400 randomly ordered resources.
Except for the bright diagonal, whose elements are identically equal to 1 because of the normaliza-
tion property of the strength w, the matrix appears featureless. Note that no community structure
appears. Color figure is only available in electronic version.

The problem we have to tackle now is finding the sequence of row and column
permutations of the similarity matrix that permits one to visually identify the
presence of communities of resources, if at all possible. The goal is to obtain a
matrix with a clear visible block structure on its main diagonal. One possible way
to approach this problem is to construct an auxiliary matrix and use information
deduced from its spectral properties to rearrange rows and columns of the original
matrix. The quantity we consider is the matrix

Q = S − W, (3)

where Wij = (1 − δij)w′
ij and S is a diagonal matrix where each element on the

main diagonal equals the sum of the corresponding row of W , i.e. Sij = δij

∑
j Wij .

The matrix Q is nonnegative and resembles the Laplacian matrix of graph theory.
As shown in Refs. 9 and 10, the study of its spectral properties can reveal the
community structure of the network.

The main idea is to consider the lowest eigenvalues of Q. According to the defi-
nition of Q, there is a always a zero eigenvalue corresponding to an eigenvector with
equal components, i.e. a trivial constant eigenvector. Let us now consider the simple
case where the matrix Q is composed of exactly two nonzero blocks along its main
diagonal (i.e. with two clearly separated semantic communities). In this case, two
eigenvectors with zero eigenvalue are present, signalling the existence of two discon-
nected components. When nonzero entries connecting the two blocks are present,
only one null eigenvalue survives, and the components of the eigenvectors with the
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lowest eigenvalues reveal the community structure. Given the set of these nontriv-
ial eigenvectors, a very simple way to identify the communities consists in plotting
their components on a (multidimensional) scatter plot. Each axis reports the val-
ues of the components of the eigenvectors. In particular, each point has coordinates
equal to the homologous components of one eigenvector. In this kind of plot, com-
munities emerge as well-defined clusters of points aligned along specific directions.
The components involved in each cluster identify the elements belonging to a given
community. Once the communities are identified, it is interesting to permute the
indices of the original matrix W such that the components of the same community
become adjacent. The corresponding matrix should appear roughly madeup of diag-
onal blocks, possibly with mixing terms signalling an overlap between communities
(blocks).

Figure 5 displays the eigenvalues of Q sorted by their value. As expected, the
null eigenvalue is present, corresponding to the trivial constant eigenvector.

Figure 6 displays a three-dimensional scatter plot illustrating the structure of
the three eigenvectors that correspond to the three lowest nontrivial eigenvalues of
Q (the second, third and fourth ones; see Fig. 5).

The axes show the values of the components of the second, third and fourth
eigenvectors, respectively (denoted by V2, V3 and V4). In particular, each point has
coordinates equal to the homologous components for the three nontrivial eigenvec-
tors considered.

The existence of at least five well-defined communities is evident, with each com-
munity corresponding to one of the five well-separated nonnull eigenvalues of Fig. 5.
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Fig. 5. Eigenvalues of the matrix Q [Eq. (3)]. Resource communities correspond to nontriv-
ial eigenvalues of the spectrum, such as the ones visible on the leftmost side of the plot and
in the inset. The three eigenvalues marked in the inset correspond to the eigenvectors plotted
in Fig. 6.
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Fig. 6. Eigenvectors of the matrix Q [Eq. (3)]. The scatter plot displays the component values of
the first three nontrivial eigenvectors of the matrix (marked with circles in Fig. 5). The scatter plot
is parametric in the component index. Five or six clusters are visible, corresponding to the smallest
nontrivial eigenvalues of the similarity matrix. Each cluster, marked with a numeric label, defines
a community of “similar” resources (in terms of tag clouds). Blue and red points correspond to
resources tagged with design and politics, respectively. Notice that our approach clearly recovers
the two original sets of resources, and also highlights a few finer-grained structures. Tag clouds
for the identified communities are shown in Fig. 8.

A sixth, very small community, corresponding to the sixth nontrivial eigenvalue, is
barely visible.

Once we have diagonalized the matrix Q the permutation of indices necessary to
sort the component values of these eigenvectors yields the desired ordering of rows
and columns in the original matrix W . By performing this reordering it is possible
to visualize the matrix of strengths of Fig. 4 in a way that makes it maximally
diagonal. Figure 7 reports the reordered matrix.

An interesting question is now whether the communities we have found corre-
spond to semantic differences in the set of resources. In order to check this point
we build for each community a tag cloud from the tags associated with the corre-
sponding group of resources.

Figure 8 reports the six tag clouds (ordered by decreasing number of member
resources), where the font size of each tag, as usual, is proportional to the logarithm
of its frequency of occurrence. Despite the intrinsic difficulty of identifying the
semantic context defined by a given tag cloud, it is possible to recognize that each
comunity of resources — at least for the four largest — comprises resources with a
specific semantic connotation. In particular, the first community can be associated
with humor in politics, the second with visual design, the third with political blogs
and the fourth with Web design.
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Fig. 7. Matrix w′ of link strengths [see Eq. (2)] for our set of 400 resources. Here the resource
indices are ordered by community membership (the sequence of communities along the axes is 2,
4, 6, 5, 3, 1; see Fig. 8). In striking contrast to Fig. 4, the permutation of indices we employed

clearly exposes the community structure of the set of resources: two large groups of resources
with high similarity, corresponding to the blue/red rectangles at the top right and bottom left
of the matrix, correspond respectively to resources tagged with design and politics. On top of
this, our approach reveals the presence of finer-grained community structures within the above
communities (red rectangular regions toward the center of the matrix). On direct inspection, these
communities of resources turn out to have a rather well-defined semantic characterization in terms
of tags, as shown by the tag clouds of Fig. 8. Color figure is only available in electronic version.

Fig. 8. Tag clouds for the six resource communities identified by our analysis (see Fig. 6) ordered
by decreasing community size. Each tag cloud shows the 30 most frequent tags associated with
resources belonging to the corresponding community. As usual, the size of text labels is propor-
tional to the logarithm of the frequency of the corresponding tag. The first two communities (the
biggest ones) correspond largely to the main division between resources tagged with politics and
design, respectively. Notice how each tag cloud is strongly characterized by only one of those
two tags. In addition to discriminating the above two main communities, our approach identifies
additional, unexpected communities. On inspecting the corresponding tag clouds, one can recog-
nize a rather well-defined semantic connotation pertaining to each community, as discussed in the
main text.
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5. Conclusions

The increasing impact of Web-based social tools for the organization and sharing
of resources is motivating new research at the frontier of complex systems science
and computer science, with the goal of harvesting the emergent semantics [11] of
these new tools.

The increasing interest in such new tools is based on the belief that the anar-
chic, uncoordinated activity of users can be used to extract meaningful and useful
information. For instance, in social bookmarking systems, people annotate a per-
sonal list of resources with freely chosen tags. Whether or not this could provide a
“social” classification of resources is the point we want to investigate with this work.
In other words, we investigate whether an emergent community structure exists in
folksonomy data. To this end, we focused on a popular social bookmarking sys-
tem and introduced a notion of similarity between resources (annotated objects)
in terms of social patterns of tagging. We used our notion of similarity to build
weighted networks of resources, and showed that spectral community detection
methods can be used to expose the emergent semantics of social tagging, identify-
ing well-defined communities of resources that appear associated with distinct and
meaningful tagging patterns. The present analysis was limited to an experiment
where the set of resources was artificially built by selecting resources tagged with
semantically unrelated tags: future directions for this research include large-scale
experiments on broader sets of resources, to assess the robustness of our method, as
well as the investigation of other indicators of social agreement that can be lever-
aged to expose structures in folksonomies. Such efforts could lead to improved user
interfaces, increasing both the usability and utility of these new, powerful tools.
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