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Description-Based Design of Monophonic Melodies 

Abstract 

We introduce a novel paradigm for creating musical objects, based on the combination 

of a machine-learning and a combinatorial algorithm. In this scheme users associate 

freely subjective descriptions (tags) to musical objects. A machine-learning component 

continuously learns a mapping between these tags and a set of technical features. 

Thanks to a combinatorial generator, the user can then reuse these tags to modify other 

objects, in an incremental manner. In this scheme, to the traditional construction or 

programming task is substituted a description task integrated with an interactive 

naming game. We describe the paradigm and its application to the construction of 

simple monophonic melodies. We show that the approach allows users to create 

“interesting” melodies of various types without requiring any form of explicit 

programming. This approach to music composition lessens the need for technical skills 

from the composer, while exploiting fully his capacity to express and manipulate 

consistent subjective judgments.  

1. Background 

Most of the current approaches in computer-aided composition (CAC) are based on an 

explicit construction paradigm: users build musical objects by assembling components 



 
 

3 
 
 

using various construction tools. Virtually all the technologies developed by computer 

science and artificial intelligence have been applied to CAC; thereby progressively 

increasing the sophistication of music composition tools. Composers can choose 

between many programming paradigms to express the compositions they “have in 

mind”, from the now standard time-lined sequencers (e.g. Steinberg’s Cubase) to 

advanced programming languages or libraries (e.g. OpenMusic, Assayag et al. 1999). 

Although these explicit constructions do benefit from abstractions of increasing 

sophistication (e.g. objects, constraints, rules, flow diagrams, etc.) CAC always remains 

based on an explicit construction paradigm: users must give the computer a clear and 

complete definition of their material. This approach has the enormous advantage of 

letting users control all dimensions of their work. However, it also requires from users a 

fine understanding of the technicalities at work. For instance, composing music with 

object-orientation requires the understanding of objects, classes and message passing. 

Using constraints requires the understanding of constraint satisfaction, filtering and of 

the basic constraint libraries, etc. An interesting attempt to escape these technical 

requirements is the Elody system (Letz et al., 1998) in which user can create arbitrary 

abstractions by selecting a musical material together with a specific dimension of music 

(e.g. pitch or rhythm). These abstractions can then be applied to other musical material 

to create yet more complex objects. But here again the user has to mentally maintain a 

model of the abstraction algorithm at work, a task which can be particularly difficult as 
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the complexity of the composition grows. Other approaches propose construction tools 

that do not require explicit programming skills. For instance, (Hamanaka et al., 2008) 

propose a morphing metaphor in which melodies can be created as interpolations 

between two given melodies. But this approach is limited to the context of the 

generative theory of tonal music (Lerdahl & Jackendoff, 1983), and is not extensible to 

arbitrary categories as we will show here.  

We propose here a novel approach to music composition called Description-Based Design 

which aims at removing the need for the user to understand anything technical related 

to his target objects. In this paper we focus on the creation of simple musical objects - 

monophonic melodies - as a working example, but our paradigm is general and may be 

applied to many other fields of design. 

In Section 2 we introduce the general description-based design mechanism. In Section 3 

we describe the type of melodies we target, and in Section 4 we describe experiments 

demonstrating the functioning of the algorithm and its potential. 

2. Description-Based Design 

Description-based design stems from the paradigm of Reflexive Interaction (Pachet, 

2008). The idea is to let users manipulate images of themselves, produced by an 

interactive machine-learning component. The creation of objects (musical objects in our 
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case) is performed as a side-effect of the interaction, as opposed to traditional 

interactive systems in which target objects are produced up-front, as the result of a 

controlled process. A typical example of reflexive interactive system is the Continuator 

(Pachet, 2004), a system which learns continuously stylistic information coming from 

the user’s performance, and generates music “in the same style” in the form of real-time 

answers to, or continuations of, the music performed by the user. The Continuator was 

shown to trigger spectacular interactions with professional Jazz musicians (Pachet, 

2004) as well as with children (Addessi & Pachet 2005) involved in free, unstructured 

improvisation. However, this type of interaction shows limitations when users want to 

structure their production, in other words, when they want to shift from improvisation 

to composition. 

Description-based design adds a further component to the Continuator-like interaction 

by introducing an explicit linguistic construct, precisely aiming at addressing this 

“structure” problem inherent to free form improvisation systems. The idea is the 

following. In a first phase, the system generates objects, melodies in our case, randomly 

or according to specific generators. The user can then freely tag these objects with 

words, e.g. “jumpy”, “flat”, “tonal”, “dissonant”, etc. Each object can be tagged by 

several words, or by none. In a second phase, the user selects a starting object (say, a flat 

melody), and one of his tags (say “jumpy”). He or she can then ask the system to 

produce a new object which will be “close” to the selected one, but “more jumpy”, or 
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“less jumpy”. More generally the user can reuse any of his tags to modify a given object 

in the semantic direction of the tag. The system will then attempt to generate a new object 

that optimally satisfies two conditions: 1) being “close” to the starting object and 2) 

increasing (or decreasing) the probability of being of a certain tag. The new object (in 

our case, a progressively jumpier melody) is then added to the palette of objects created 

by the system. It can, in turn, be tagged or refined at will. The design activity is 

therefore strictly restricted to 1) tagging objects and 2) creating variations using these 

tags. The implementation of this scheme requires a combination of components that we 

briefly describe here. 

1. Object generator 

We call the objects that the user wants to produce target objects. In our context these 

objects are defined by 1) a set of technical features that describe these objects and 2) a 

generator that produce sets of objects. The generator is a program that should be able to 

randomly generate every possible object of interest. The choice of the feature set will 

influence the capacity of the system to learn faithfully user tags, but identifying 

reasonable feature set is usually straightforward. These two ingredients are therefore 

easy to design. We give the details for the particular case of monophonic melodies 

below. 
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2. A Machine-learning Tagging System 

The second component is a tagging system, associated with a machine-learning 

algorithm that learns a mapping between user tags and the feature set. In our case, this 

machine-learning component is a Support Vector Machine (SVM). SVMs are automatic 

classifiers routinely used in many data mining applications (Burges, 1998). In the 

training phase, a SVM builds an optimal hyper-plane that separate two classes, so as to 

maximize the so-called “margin” between the classes. This margin can then be used to 

classify new points automatically using a geometrical distance as illustrated below. 

SVMs have been used extensively to learn music information, in particular in the audio 

domain, typically using spectral features (Mandel et al., 2006). In our case, we use them 

to learn classes from symbolic features, as described below. 

The tags are entered by the users as free text. To each tag is associated a SVM classifier, 

which is retrained each time a user adds or removes a tag for an object. To avoid 

undesirable effects such as over-fitting, a feature selection algorithm is applied prior to 

the training phase. We use the IGR (Information Gain Ratio) algorithm (Quinlan, 93) by 

which only a limited number of features are kept, maximizing the “information gain” of 

each retained feature. Once trained, this classifier can compute a probability for that tag 

to be true for any object. Similarly, the classifier computes the probabilities, for a 

selected melody, of all learned tags, according to the current state of the system in the 
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session. More precisely, for a given tag, we use Boolean classifiers, trained on positive 

and negative examples. Positive examples are all the objects having been tagged by the 

user with this tag. Negative examples are chosen automatically by the system, 

according to various heuristics (notably, it chooses approximately the same number of 

negative examples than positive ones and chooses only objects which have been tagged, 

obviously with other tags than the tag considered). 

Of course, the accuracy of this prediction depends on many factors including the 

feature set, but also the number of examples, i.e. objects having been tagged by the user. 

In the experiment described in this paper we show empirically that the predictions are 

satisfactory after about 70 examples for each category, but this result is not general. 

A crucial aspect of the classifier to work in our context it that it should yield, for a given 

item, not only a class membership, but a probability of membership. Support Vector 

Machines (SVM) are an appropriate framework in this case as they precisely transform 

a classification problem into a geometrical distance problem. Once trained to classify 

between two classes, say A and B, a SVM identifies a set of support vectors, which 

define an optimal margin between A and B, as illustrated in Figure 1. The classification 

decision for an item I is then made on the basis of the distance of I to the hyperplane 

defined by the support vectors. As a consequence, one can interpret this distance as the 

inverse of the probability for I to belong to A (resp. to B). This is particularly true for 
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items which are “outside” the hyperplane, i.e. who are not classified as belonging to the 

class under consideration. 

Figure 1. A Support Vector Machine defines a class separation
dimension n-1, dividing the space into two regions. 
“margin” points called support vectors
represents the class separation itself. Th
as the inverse of the probability for the item to belong to the class
closer to A than variation1, so its probability to belong to A is greater. 
variations (variation1 and variation2) is not necessarily meaningful.

3. A combinatorial generator

The task of the combinatorial generator 

maximize two properties: 1) being as close as possible to the initial object and 2) 

increasing (resp. decreasing) the probability of a given tag/classifier

naïve, combinatorial version of 

FindMoreOfTag (Source, Tag

e hyperplane, i.e. who are not classified as belonging to the 

 

. A Support Vector Machine defines a class separation in a n-dimensional space as an 
into two regions. In this figure, the heavy lines are defined by 

support vectors and define the margin. The lighter line, in the middle of the margin,
The distance between a point and the hyperplane is traditionally

probability for the item to belong to the class outside the boundary. In this case, 
, so its probability to belong to A is greater. Note that the distance between 

) is not necessarily meaningful. 

A combinatorial generator 

combinatorial generator is to generate variations of a

maximize two properties: 1) being as close as possible to the initial object and 2) 

decreasing) the probability of a given tag/classifier by a given ratio

version of this algorithm is given in Figure 2: 

, Tag, ratio) 

e hyperplane, i.e. who are not classified as belonging to the 

 

as an hyperplane of 
he heavy lines are defined by particular 

, in the middle of the margin, 
traditionally interpreted 
In this case, variation2 is 

he distance between item and its 

of an object that 

maximize two properties: 1) being as close as possible to the initial object and 2) 

by a given ratio. A 
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1. initial_Tag_Prob := probability that Source is classified as Tag; 

2. Variations := N randomly generated variations of Source; 

3. Sorted_Variations := Variations sorted according to distance to Source 

4. For all V in Sorted_Variations do 

5.     Prob_V := classify V according to Tag.  

6.     If (prob_V > (initial_Tag_Prob * (1 + ratio)) return V. 

7. If no object was found with a probability of Tag being greater than initial_Tag_Prob then 

report failure, or restart with greater value of N. 

Figure 2. The combinatorial search algorithm. The “FindLess” is similar. Extension to compound commands is 
straightforward. N is a predetermined number of variations to be generated. 

The generation of variations is domain-specific. We describe a simple variation 

generator for melodies below. Increasing the probability of the variation to belong to 

the class represented by the tag is done in our case by exploiting the probability given 

by the SVM, as described in the previous section. Sorting generated variations 

according to the distance to the initial object is a crucial step, as it ensures that the 

resulting variation will be as close as possible to the starting object. There are several 

ways to implement such a distance. One is to use the feature set described in Section 2, 

which defines a natural distance between two objects (e.g. an Euclidean distance). The 

feature space can also be transformed, e.g. by the kernel used for classification. In our 

example, a standard Radial Basis Function (RBF) kernel was used. However, the 

distance between two items given by a SVM is not necessarily appropriate, as kernel 

transforms aim primarily at optimizing class separation, and not at defining a 

meaningful distance between items of the training set.  



 
 

11 
 
 

A better option is to introduce a domain-dependent distance. In the case of melodies, 

we use a Levenshtein distance (Levenshtein, 65) on the pitch sequence, as described 

below. 

A simple extension of this algorithm is the use of “compound commands”. Arbitrary 

Boolean expressions can be formed from basic “more” or “less” commands, such as 

“more T1 AND less T2 AND as T3” (the tags Tn are typically adjectives). Such an extended 

Boolean expression can be easily substituted to the test of line 6 in the pseudo code of 

Figure 2. An example is given in Section 4 where we generate a “more long AND as 

tonal” melody. 

We will now describe an application of our scheme to the construction of melodies. 

3. The case of Monophonic Melodies 

4. Five types of melodies 

Melodies are a good example to illustrate our approach because they are both technical 

objects and subjective ones. There are many known technical features to describe 

melodies, notably related to pitch distribution, repetition or tonality. There are also 

many subjective appreciations one can think about to talk about melodies (simple, 

jumpy, linear, annoying, dissonant, etc.). There is furthermore no simple way to 

associate these subjective expressions to the technical features, especially for non 
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musicians. Even for trained musicians, finding the “right melody” can sometimes be an 

extremely difficult task. So melodies are an ideal playground for description-based 

design. 

In this experiment, we restrict ourselves to the composition of 4-bar monophonic 

melodies, with a maximum of 4 possible notes durations (quarter, half, dotted half and 

whole notes) and a pitch range of [60, 80] (in Midi pitch). Figure 4 gives an example of 

such a melody. Although these restrictions may appear drastic, compared to real 

melodies, these constraints still define a search space of more than 2016 possible items, 

huge enough to justify the use of our framework.  

The aim of the experiment described here is to demonstrate that the algorithm proposed 

and described in Section 3 essentially works, i.e. does produce “close variations” that 

increase the probabilities of melodies to be of an arbitrary subjective category. To this 

aim, we chose not to consider arbitrary subjective categories, but limit the experiment to 

5 “controlled” categories: tonal, brown, serial as well as long and short. The justification 

for this choice comes from the clarity of the definition of each of them, which allows us 

to test the results non-ambiguously. More precisely we introduce the following 

(possibly overlapping) categories: 

Tonal melodies are melodies having a clear tonal center. Although the notion of 

tonality has long been an object of debate in musicology as well as in cognitive 
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science (Temperley, 2007), it is quite easy to produce melodies with a clear tonal 

center and we give below a simple algorithm to do so. An example of a tonal 

melody is given below in Figure 3. 

 

Figure 3. A typical tonal melody: “My rifle, my pony and me” (sung by Dean Martin and Ricky Nelson), here, 
stylized. 

Brown melodies are melodies with only small intervals. The brown term is 

borrowed from the famous experiment of Voss and Clarke (1978), who compared 

random, Brownian and 1/F melodies. We give below the description of a simple 

algorithm that generates brown melodies. A typical example of a brown melody 

is the song “With a little help from my friends” by Lennon & McCartney (see 

Figure 4). 

  

Figure 4. The melody of “with a little help from my friend” (here, stylized) is a typical brown melody. 

Serial melodies are defined here to be melodies in which all pitches occur with 

equal frequency. Serial melodies are rarely used in popular music, but this 

category is useful for our demonstration as it bears a non-ambiguous definition. 
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Typical serial melodies are dodecaphonic melodies, in which all 12 pitch classes 

are used. 

Additionally, we introduce two categories: long and short. These categories are 

simply related to the number of notes. Like the preceding ones, they will be 

defined only by a set of examples. 

72 examples of each of the three categories (tonal, serial and brown) are generated and 

given to the system, with the corresponding tags. Examples of these generated melodies 

are given in Figure 5. The generators are defined as follows. For each generator, the 

basic operation described below is repeated nb times, where nb is a random number 

between 0 and 16. 

The tonal generator draws randomly notes from a random scale (e.g. C major). Each 

note falling on a beat is chosen from the triad of the scale. The other notes are chosen 

randomly from the scale. The duration is each note is randomly selected between 

quarter and half notes.  

The serial generator randomly draws a pitch from an initial list of all possible pitches. It 

then removes it from the list and repeats the operation. When the list is empty, the list is 

filled again. This ensures a “maximally” serial melody, given the pitch range. 

The brown generator starts from a random pitch. It then randomly draws an interval in 

{ -1, +1}, and adds it to the preceding pitch.  
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In all three cases, the notes’ MIDI velocities values (corresponding roughly to loudness) 

are random integers taken in the range [70, 100]. 

 

Figure 5. Examples of (resp.) tonal, serial and brown melodies, generated by our three generators. 

The variation generator we use is a deliberately simple and agnostic algorithm. Starting 

from a set containing only the initial melody, it generates a variation by picking up 

randomly one of the following three modifications: 

1. Modify the pitch of a randomly selected note, 

2. Insert a random note with a random pitch and velocity, 

3. Remove a randomly selected note. 

The resulting variation is then added to the set and the process is repeated by picking 

up randomly a new “seed” melody from the updated set. This procedure creates, by 

definition, variations of various “depths”, i.e. very similar as well as very different 
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melodies. In the experiments described here, the number of variations produced and 

explored is set to 20,000. 

The set of features we use for describing melodies is the following table: 

Number of notes 

Mean value of the pitch sequence 

Mean value of the “pitch interval” sequence 

Mean value of the velocity (Midi information) 

Tonal weight. This feature gives an indication of how tonal is a melody. It is computed using a 

“pitch profile” algorithm (Krumhansl, 1990): for each possible 12 major scales, it counts the 

number of notes of the melody which are in this scale. It returns the maximum value of this 

count. 

Pitch compressibility ratio. This feature gives an indication of how repetitive is the melody. It uses 

a data compression algorithm as used in the Continuator (Pachet, 2004). Its value lies between 0 

(no repetition at all) and 1 (a sequence with the same note repeated throughout). 

Interval compressibility ratio. This feature is the same as the previous one, but applied to the 

sequence of intervals rather than pitches 

Table 1. The set of features used to represent and learn melodies. 

Many other melody features could be introduced but we restrict ourselves to this list in 

the context of this experiment. As we will see below the velocity feature is not used in 

this particular experiment and is just inserted here to show the robustness of the 

algorithm. As mentioned above, a feature selection algorithm is applied on the feature 



 
 

17 
 
 

set prior to learning, to select the most meaningful features given the set of examples 

and counter examples for a given tag. This feature selection has the extra advantage of 

giving an indication about how the classifier has generalized from the examples. 

4. Experiments 

We first generate a set of examples using our three melody generators: tonal, serial and 

brown. We then train the corresponding classifiers on these examples. Finally we 

introduce the “long” and “short” categories by tagging the generated melodies 

accordingly, and also train the corresponding long and short classifiers. After this step, 

the system is able to predict each of these five categories for any, possibly untagged, 

melody. We then perform a series of experiments using these generated melodies as 

starting points and the classifiers as modifiers. 

5. Training phase 

After the training phase, each of the five categories has been trained on approximately 

72 positive examples and 72 negative examples. The negative examples are chosen 

automatically for the system, for the brown, tonal and serial categories, by picking-up 

random melodies which are not tagged with the corresponding tag. In the case of the 

long and short categories, we help the system in telling it to use long examples as 

negative examples for short, and conversely. This trick is to avoid having “bad” counter-
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examples, as some generated melodies could turn out to be long (or short) without 

being tagged as such. 

As a result, we give here the result of the feature selection process applied for each tag 

(only the first four most significant features are kept). This gives an indication of which 

features were selected by the classifier, and with which weight. These numbers indicate 

“how well” the classifiers have understood the semantics of each generator. The most 

important features for brown, long and short do fit with the corresponding semantics of 

the generator. It can be observed that the “tonal” classifier did use the feature 

“tonalWeight”, but not in first position. This slight discrepancy is due to the limited 

number of examples given for training. It has a small incidence on the process, as 

shown in Figure 13.  

 Tonal Brown Serial Long Short 
1 0.791  

meanPitch 

1 

meanPitchInterval 

0.795 

meanPitch 

1 

nbNotes 

1  

nbNotes 

2 0.788  

tonalWeight 

0.948 

intervalCompRatio 

0.649 
pitchCompRatio 

0.67 

meanPitch 

0.75 

intervalCompRatio 

3 0.546 
meanPitchInterval 

0.437 

meanPitch 

0.489 

meanPitchInterval 

0.586 

tonalWeight 

0.723 

meanPitchInterval 

4 0.49 

pitchCompRatio 

0.139 

tonalWeight 

0.399 

tonalWeight 

0.264 

pitchCompRatio 

0.634 

meanPitch 

Table 2. The feature selection mechanism applied to our 5 categories. 

In a second step we will now consider a series of use cases, illustrating the use of 

classifiers as melody constructors using the description-based algorithm. In particular 
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we show that the algorithm is able to produce variations that would otherwise be found 

only by very specific programs. 

6. Tonalizing a serial melody 

The first example consists in starting from a serial melody (Figure 6) and making it 

progressively more tonal. Figures 8-11 illustrate the process step-by-step. At each step, a 

new melody is generated which as both close to the preceding one and slightly more 

tonal. The initial melody is generated with the serial generator. The last one is optimally 

tonal while being still “close” to the original. We indicate the probability of each 

classifier (tonal and serial) as well as the effective measure of tonalness. Note that such a 

measure is usually impossible to get with arbitrary categories, hence the use of control 

categories for this experiment. These figures and the resulting melodies indicate clearly 

that 1) the system has correctly learned the notion of tonal and serial and more 

importantly 2) that it is able to use these classifiers as melody generators controlled by 

the tags. 

 

Figure 6. Initial melody created by the serial melody generator. The melody is perfectly serial according to our 
definition (all pitches are different, though here not all pitch classes). The “serial” classifier yields a probability 
of 1.0. The “tonal” classifier yields a probability of 8*10-3. 
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Figure 7. The same melody, a bit “more tonal”. The differences are highlighted. The “tonal” classifier has 
increased its probability to 5.7 * 10-2. 

 

Figure 8. Still a bit “more tonal”. Probability is now 1.4 * 10-1. 

 

Figure 9. Again, more tonal. Probability is now 3.11 * 10-1. 

 

Figure 10. More tonal again. Probability is 5.3 * 10-1. 

 

Figure 11. Probability is now 7.7* 10-1. 
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Figure 12. Final step, the melody is now perfectly tonal (in Bb, with a probability of the tonal classifier of 9.6 10-1), 
yet “similar” to the initial serial melody. The accidentals are displayed without correction and thus do not reflect 
the tonality, which contains flats rather than sharps. 

 

Figure 13. A slightly more “tonal” version of the melody. The melody is, strictly speaking not more tonal than the 
preceding one. However, because the notion of tonalness was not learnt perfectly by the classifier, the algorithm 
found an artificial way of improving its “understanding” of tonalness by reducing the number of notes. 

Table 3 indicates the progressive increase in tonalness at each step of the process. This 

increase is confirmed by the increase of “real” tonalness of the melody, as computed by 

the tonalWeight feature (described in Table 1). 

Melody versions Serial classifier Tonal Classifier  Tonalness 

1 - Initial 1.0 8 * 10-3 0.54 

2 - More tonal 1.0 5.7 * 10-2 0.625 

3 - More tonal 1.0 1.4 * 10-1 0.66 

4 - More tonal 9.95 * 10-1 3.11 * 10-1 0.70 

5 - More tonal 8.15 * 10-1 8.15 * 10-1 0.75 

6 - More tonal 1.82 * 10-2 7.7 * 10-1 0.79 

7 - More tonal 3.87 * 10-5 9.63 * 10-1 0.87 
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8 - More tonal 1.72 * 10-7 9.98 * 10-1 1.0 

Table 3. The progressive increase in “tonalness” at each step of the process leading to sequences in Figures 7-13. 

7. Stretching a tonal melody 

The second experiment consists in using description-based design to stretch a melody, 

i.e. “adding more notes”. Of course, an easy solution to this problem consists in 

programming explicitly a function to add notes to a given melody. But we can again 

avoid the use of such an explicit programming. To this aim, we can reuse the two tags: 

“long” and “short”, trained with examples generated with the other three generators. 

By convention, we tag melodies with less than 8 notes as short, and melodies with more 

than 12 notes as long. As a consequence, the system automatically learns long and short, 

with examples coming from all three generators. We can check that the system has 

correctly learned the tags long and short by observing the selected features, as indicated 

in Table 2: The feature “number of notes” was selected as a primary feature for “long” 

and “short”. This feature selection process also shows incidentally that the system has 

however not simply associated long and short to the number of notes, but to a more 

complex configuration of features. For instance, it turns out that most of the long 

melodies also have, by definition, more repetition in their interval sequence. The system 

has no way to generalize better in our context (“better” would be to only consider the 

feature “nbNotes”). But as we will see, this approximation does not prevent it to produce 

“meaningful” variations. 
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We now consider a melody which is tagged both as tonal and short, illustrated in Figure 

14 (first melody). In a first step we will make it longer as in the previous experiment, i.e. 

through the command more long. As we can observe, this command indeed results in a 

similar melody, with more notes. The sequence of “more long” commands is illustrated 

in Figure 14, and it can be noted that the melodies have all indeed progressively more 

notes (from 7 initially to 8, 9 and 10). 

 

 

 

 

Figure 14. A short and tonal melody as a starting point for repeated “stretching” operations. The probability of 
being “long” is initially 1.06* 10-7. Successive probabilities of being “long” are 1.25 * 10-3, 9,77 * 10-1 and 1.0. The 
latest melody cannot be stretched any further as its probability of being long is 1.0. 
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However, it can also be noted that the notes which have been added to the melody by 

the combinatorial algorithm make it not tonal any longer: the initial melody is in C, but 

added notes (D#, C# and F#) are not in C. This is highlighted by the fact that the 

corresponding probabilities of being tonal have shifted from .99 to .07 (see Table 4). This 

phenomenon is normal, as the system has just been asked to make the melody “more 

long”, but was not given any constraint on tonality or on any other property. 

A natural way to address this problem consists in issuing a compound conjunctive 

command of the form “more long AND as tonal”. Such a query is made by selecting the 

tags and the corresponding modifiers through a specific interface (Figure 16). In this 

case, starting from the same melody, we obtain the melodies in Figure 15. We can 

observe that the algorithm has now progressively added only tonal notes (F and G). 

Most importantly, these added notes have been chosen as a “side-effect” of the 

compound command, and not through the introduction of an explicit representation of 

tonality in the program. 
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Figure 15. The short and tonal melody now progressively made “more long and as tonal”. Respective probabilities 
of being “long” and “tonal” are given in Table 4. The final melody is 1) close to the original, 2) longer and 3) still 
as tonal as the starting one. 

Melody versions long tonal Number of notes 

1 : Short and tonal 1.0 * 10-7 9.9 * 10-1 7 

2 : 1 More long 1.25 * 10-3 9.2 * 10-1 8 

3 : 2 More long 9.77 * 10-1 6.13 * 10-1 9 

4 : 3 More long 1.0 7. * 10-2 10 

5 : 1 more long AND as tonal 3.8 * 10-5 9.9 8 

6 : 5 more long AND as tonal 1.4 * 10-1 9.96 * 10-1 9 

7 : 6 more long AND as tonal 1.0 9.87 * 10-1 10 

Table 4. Variations on the starting “short and tonal” melody. Variations 2 to 4 are obtained by applying the “more 
long” command. Variations 5 to 7 are obtained by applying the “more long AND as tonal” command to the same 
initial melody. 



 
 

26 
 
 

 

Figure 16. An interface for specifying conjunctive compound queries holding on several tags simultaneously. For 
each tag the user can specify the type of action (as, more, less or ignore) and the corresponding ratios. Here, a 
query to produce an item which is “more long by 15%” AND ‘’as tonal by 10%, while the other tags are ignored. 

Note that this compound query triggers a non trivial search. Figure 17 illustrates the 

search process corresponding to “more long and as tonal” query. At each iteration (X 

axis) the probabilities for tags “long” (dashed line) and “tonal” (plain line) are 

displayed. A solution is found when the “tonal” plain line is within the two horizontal 

dashed lines (which represent the bounds +/- 10% of the starting tonalness) and 

simultaneously the “long” (dashed) line is above the horizontal large line (which 

represents more long by 15%). It can be seen that the system explores about 300 

melodies before finding a solution. 
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Figure 17. The evolution of the search process during the “more long by 15%” AND ‘’as tonal by 10%” query. 

8. Making a tonal melody more brown 

The last example consists in starting from a tonal melody and making it progressively 

more “brown”. We illustrate again the process step-by-step in Figure 18 as well as the 

increase in brownness in Table 5. 
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Figure 18. The various steps in making a tonal melody “more brown”. Note that at step 6 the algorithm finds no 
other solution to increase brownness than to remove a note, to later add another note back (step 8). At the last 
step, the only way to improve (slightly brownness) is to remove a note (step 12). 

Melody versions brown 

1 : tonal 0.0 

2 : 1 More brown 0.0 

3 : 2 More brown 6.65 * 10-35 

4 : 3 More brown 4.67 * 10-33 

5 : 4 More brown 4.14 * 10-32 

6 : 5 More brown 1.15 * 10-29 

7 : 6 More brown 2.88 * 10-28 
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8 : 7 More brown 4.71 * 10-22 

9 : 8 More brown 3.31 * 10-20 

10 : 9 More brown 1.41 * 10-8 

11 : 10 More brown 9.95 * 10-1 

12 : 11 More brown 1.0 

Table 5. The progressive increase in brownness, starting from an initial tonal melody. 

This experiment shows again that the probability of a given tag (here, brown) does 

increase after each modification query. It can be observed that the resulting melody is 

indeed more Brownian in the sense that intervals are getting smaller in average. There 

is a limit obtained by the system, which cannot increase brownness further after step 12 

as the probability reaches 1.0, although one could imagine further small modifications 

of the melody to make it more Brownian (e.g. lowering the initial G#). This may be 

explained by the fact that the brown classifier has either not enough examples (and 

counter-examples), or that the features chosen in this experiment are not able to fully 

grasp the notion of brownness. However, the classifier learns enough to produce 

meaningful "small variations". Furthermore the user has the possibility at any step to 

tag the resulting new melodies, and retrain the classifiers to continuously fine-tune the 

system. 
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5. Discussion 

We have introduced description-based design as a novel way of building musical 

objects, which does not require any form of programming knowledge from the user. 

The only programming constraint lies in the variation generators: they have to be 

designed in such a way that they generate, at least, the target objects (together with 

possibly many unwanted objects). However, this is a relatively weak constraint as these 

generators can be designed once for all, for a particular domain (here, melodies). Of 

course, more or less efficient generators could be considered, but default naïve 

generators are easy to design. 

This paper only aims at demonstrating the nature of the underlying algorithm using 

simple, well-understood examples. The experiment presented here used controlled 

categories to illustrate the algorithm and show its capacity to produce musical objects, 

without explicit programming or editing. The approach is, in essence, more suited to 

the use of subjective, non-controlled descriptions, and reaches its full potential when 

these descriptions are collected massively from social tagging systems. Such an 

experiment is currently under way, using tags collected from a melody competition web 

site. In this context, users can both produce melodies, tag the melodies of others, and 

reuse tags for modifying melodies. Another application of this paradigm is to use the 

system to control the generation of Jazz improvisations, as an extension of the 
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Continuator system (Pachet, 2004). In this latter case, subjective tags are used as control 

handles to influence, in real time, the quality of generated solos. 

Note that the working example showed here is based on SVM, but other classifiers 

could be used. Decision Trees for instance, have been shown recently to exhibit better 

geometrical properties than SVMs (Alvarez et al., 2007). They could be substituted to 

SVMs without changing the framework. 

The algorithm we propose is blind, bearing some similarity with other blind search 

algorithms like genetic algorithms (GAs), often used in music generation (Biles, 1994). 

GAs could indeed be used to build our variations, instead of specifically designed 

random generators. However GAs are more difficult to control than random generators. 

Most importantly, we believe that our currently naïve search algorithm can be 

optimized by exploiting information about the features used by the classifier, and this 

constitutes a current avenue of research. Such an optimization is not possible, by 

definition, in GAs, which operate on chromosomes, which are independent of the 

feature sets used by the classifiers. 

Description-Based Design attempts to bridge the gap between description and 

construction, thereby reducing the need for users to learn the technical languages of the 

objects they have “in mind”. This approach is well suited to domains in which 1) 

features to describe objects are known and accurate and 2) users have the capacity to 
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easily express subjective judgments in a consistent way. This applies to most of the 

musical objects created in the context of computer-assisted composition. For instance 

description-based design is currently being applied to other types of musical objects, in 

particular chords, chord sequences, harmonized melodies. 

Audio synthesis is also being investigated. For instance, programming FM sounds 

require notoriously complex knowledge of FM synthesis. Several approaches have 

attempted to provide users with more subjective means of programming sound 

synthesizers (Rolland & Pachet, 1996) (Sarkar et al., 2007). But these approaches are 

always based on a fixed, pre-programmed representation of supposedly universal 

subjective judgments. Description-based design allows users to express personal 

subjective judgments about sound textures and reuse these judgments to explore sound 

spaces in an intuitive and personal way. In the case of audio loops, our approach can 

benefit from two sets of technologies: 1) the large corpus of studies in the domain of 

audio features which yield efficient representations of audio objects and 2) the emerging 

technologies of concatenative sound synthesis (Schwartz, 2006) which provide us with 

the variation generators needed for description-based design. 
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