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Abstract. Nowadays, geographical coordinates (geo-tags), social anno-
tations (tags), and low-level features are available in large image datasets.
In our paper, we exploit these three kinds of image descriptions to sug-
gest possible annotations for new images uploaded to a social tagging
system. In order to compare the benefits each of these description types
brings to a tag recommender system on its own, we investigate them in-
dependently of each other. First, the existing data collection is clustered
separately for the geographical coordinates, tags, and low-level features.
Additionally, random clustering is performed in order to provide a base-
line for experimental results. Once a new image has been uploaded to
the system, it is assigned to one of the clusters using either its geograph-
ical or low-level representation. Finally, the most representative tags for
the resulting cluster are suggested to the user for annotation of the new
image. Large-scale experiments performed for more than 400,000 images
compare the different image representation techniques in terms of preci-
sion and recall in tag recommendation.

1 Introduction

With the explosive growth of Web and the recent development in digital media
technology, the number of images on the Web has grown tremendously. Online
photo services such as Flickr and Zooomr allow users to share their pictures with
family, friends, and the online community at large. An important functionality of
these services is that users manually annotate their pictures using so called tags,
which describe their contents or provide additional contextual and semantical
information. Tags are used for navigation, finding, and browsing resources and
thus provide an immediate benefit for users. In practice, however, users often tag
their pictures fully manually which is very time-consuming and therefore very
inconvenient and expensive. For this reason, it is very important to automatize
this process by developing the so called Tag Recommender Systems assisting
users in the tagging phase.

Although this research area has been now active for a couple of years [1, 2,
6, 7], the existing recommendation strategies are preliminary and their perfor-
mance for generic scenarios rather moderate. The basic idea of recommending
tags for a new image is to reuse tags assigned to similar images which have



been stored in the data collection before. One of the most challenging prob-
lems here is to find those similar images in a large-scale photo collection. Early
approaches aimed at solving this image retrieval problem by using exclusively
low-level features [13] which turned out to be almost impossible in generic en-
vironments at large-scale. Their performance was acceptable only for certain
domain specific applications such as the content-based medical image retrieval
[12]. Nowadays, the state-of-the-art imaging devices provide pictures together
with the geographical coordinates (geo-tags) stating precisely where they have
been acquired. Therefore, more and more researchers make use of the additional
information designing tag recommender systems with quite promising results [4,
8].

The most of recent tag recommendation approaches combine different image
description types (geo-tags, tags, low-level features) in order to achieve reason-
able results [9, 11]. However, one can observe a lack of research activities com-
paring the benefits each of these description types brings to a tag recommender
system on its own. In our paper, we exploit these three kinds of image descrip-
tions to suggest possible annotations for new images uploaded to a collaborative
tagging system independently of each other. First, we cluster the existing large-
scale data collection separately for the geo-tags, tags, and low-level features.
Additionally, we perform random clustering in order to provide a baseline for
experimental results. Once a new image has been uploaded to the system, it
is assigned to one of the clusters using either its geographical or low-level rep-
resentation. Finally, the most representative tags for the resulting cluster are
suggested to the user for annotation of the new image. Large-scale experiments
performed for as many as 413, 848 images compare the different image represen-
tation techniques in terms of precision and recall in tag recommendation.

The paper is structured as follows. Section 2 gives an overview about our
tag recommendation system. In Section 3 the content description methods (fea-
tures) used in social media are shortly explained, especially those used in our
framework. Section 4 explains how generating image annotations works in our
framework. In Section 5, we describe the dataset used for experiments and eval-
uate tag recommender systems of the architecture proposed at large-scale. The
tests compare different image representation techniques in terms of precision and
recall in tag recommendation. Section 6 concludes our investigations and their
results presented in this paper.

2 System Overview

We split the overall system for tag recommendation into two parts: training
and tag recommendation. The system is trained based on the image features
available in social media, once the system is trained, it is used for recommend-
ing tags for new images. Following is the brief description of training and tag
recommendation phases:

Training: In the training phase images are clustered based on their features.
A cluster contains homogeneous images depending upon the type of features



used for clustering. For this research work, we considered geographical coordi-
nates, low-level image features and tags as image features. As an example, a
cluster based on geographical coordinates might represent the images taken in
a particular location, a cluster based on low-level features might contain im-
ages showing buildings or a beach, and a cluster based on tagging data might
represent concepts like concert or river. Clustering process used in this research
work is described in section 4.1. Representative tags of a set of homogeneous
images (i.e. images in a cluster) are used to annotate new images. The method
of identifying representative tags is described in the section 4.2.

Tag Recommendation: For recommending tags to a new image, we map
the image to its closest cluster and assign the representative tags of the cluster
to the new image. The method of classifying an image to its closest cluster
and recommending tags are described in section 4.3. In the following section, we
describe the features that we have used in our experiments and are also available
in Folksonomies on a large scale.

3 Features in Social Media

To analyze the effect of different type of features on the performance of tag rec-
ommendation, we use three different image features in our experiments, namely
Geographical Coordinates (G), Low-level image features (L), and Tags (T ). Fol-
lowing are the details of the features used in this research work.

Geographical Coordinates: With the advancement in camera and mobile
technologies, nowadays many devices are available in market that are able to
capture the location of the image using a built-in or external device. In addition
to the possibility of capturing location of an image using a GPS device, some
folksonomies like Flickr facilitate the users to add geographical coordinates to
their images by providing a map interface where users can place their images on
the map. Due to this easiness, there are many images in Flickr which are enriched
with geographical information. In the CoPhIR dataset [3], around 4 Million out
of 54 Million images are annotated with geographical coordinates. The number
of geographically annotated images is supposed to increase in future as more
devices will be able to capture the geographical coordinates. We represent the
geographical coordinates of the images in a two dimensional vector space G ∈ ℜ2.
Each row vector gi of the feature space G represents the geographical coordinates
of the image i.

Low-level Image Features: There are five different types of low-level
MPEG-7 features available in the CoPhIR dataset for 54M images. Table 1
shows the properties and dimensions of the low-level features available in CoPhIR
dataset. Based on initial experimental results, we consider two low-level features
for evaluation, the MPEG-7 Edge Histogram Descriptor (EHD) and Color Lay-

out (CL), which outperformed other available low-level image features. EHD
represents the local edge distribution and CL represents the color and spatial
information in the images. We represent the low-level image features based on
EHD and CL in 80 and 12-dimensional feature spaces LE ∈ ℜ80 and LC ∈ ℜ12



respectively. A row vector ℓi of the feature space LE or LC represents the edge
histograms or color layout of the image i respectively.

Table 1. Properties and dimensions of low-level features available in CoPhIR dataset

Low-level Feature Properties Dims
Scalable Color Color histogram 64
Color Structure Localized color distributions 64
Color Layout Color and spatial information 12
Edge Histogram Local-edge distribution 80
Homogeneous Texture Texture 62

Tags: Tags are freely chosen keywords associated with the images. There is
no restriction in selecting a tag for an image. A tag might represent a concept
in an image, describe the image itself or it might also represent the context of
the image (e.g. location, event, time etc.). On average there are only a few tags
associated with the images. In 54M images of the CoPhIR dataset, each images
has on average 3.1 tags. We represent the tags of the images as a nt dimensional
vector space T ∈ ℜnt , where nt is the number of tags in the dataset. A row vector
ti∗ of the vector space T represents a resource whose non-zero values represent
the tags associated with the resource i. A column vector t∗j represents a tag
vector whose non-zero values represent the resources associated with the tag j.
A value tij represents the number of times resource i is associated with the tag
j.

The images in all feature spaces are indexed in the same order. For an image
i, the row vector gi represents its geographical coordinates, li represents its low-
level image features, and ti represents the tags associated with the same image
i.

4 Tags Recommendation

This section explains the proposed tag recommendation system in detail. In the
training phase of tag recommendation, the resources are first clustered (Sec. 4.1),
then for each cluster, its representative tags are identified (Sec. 4.2). In the tag
recommendation phase, a new resource is mapped to its closest cluster and the
representative tags of the closest cluster are recommended for the new image
(Sec. 4.3).

4.1 Clustering

Although many sophisticated clustering algorithms exist in literature, but the
literature is still sparse for clustering high dimensional and large datasets. We
use K-Means clustering algorithm in our experiments. K-Means is capable of
clustering very large and high dimensional datasets. Of course, other clustering
methods can also be employed in the framework, when one desires to fine tune



the performances or improve the results. The K-Means algorithm we used is
described in figure 1. In the following, we describe in detail how do we set
different parameters for using K-Means.

Input: Feature space F ∈ {G, L, T, D}, Number of clusters k

Output: A set of k clusters
Method:

1. Randomly select k images from feature space F as the initial cluster centroids
2. Assign each image to the closest cluster
3. Update cluster centroids
4. If cluster centroids are changed, then repeat step 2-3

Fig. 1. K-Means clustering algorithm

Number of clusters: There is no generally accepted rule for setting the
number of clusters for using K-Means. For our experiments we use the number
of clusters as suggested by Mardia et al [10, page 365]. We define the number of
clusters for n images as follows:

k =

√

n

2
(1)

By using k as defined in the above equation, we get same number of clusters
for each feature space.

Initial Cluster Centroids: In K-Means clustering, the quality of clustering
also depends on the selection of initial cluster centroids. For our experiments,
k images are randomly selected. The same set of randomly selected images are
used as cluster centroids for each feature space. Selecting the same set of images
for different feature spaces avoids accidental improvement of one feature space
over an other based on the initial centroids.

Computing distance/similarity between resources: During the clus-
tering process, each image is assigned to its closest cluster (fig 1, step 2). We
need a distance measure to compute the distance between an image and its clos-
est centroid. The most popular distance measure used is Euclidean Distance [5,
page 388]. Euclidean Distance between two m-dimensional vectors f and c is
defined as follows:

euclidean(f , c) =

√

√

√

√

m
∑

i=1

(fi − ci)2 (2)

We use euclidean distance for non-text feature spaces (i.e. geographical, low-
level, and random feature spaces). For text (or tags) based feature spaces it
is common to use Cosine Similarity [5, page 397]. We use cosine similarity to



compute similarity between image tags (in feature space T ) and cluster cen-
troids. Cosine similarity between two m-dimensional vectors f and c is defined
as follows:

cosine(f , c) =
fT· c

||f ||||c||
(3)

Experimental results show that cosine similarity for tag/text based features
performs significantly better than euclidean distance. For comparison between
different distance measures, we also evaluated the results on Manhattan distance
for non-text based features. There was no significant improvement in results if
we use Manhattan distance. Manhattan distance between two vectors f and c

is defined as follows

manhattan(f , c) =

m
∑

i=1

|fi − ci| (4)

4.2 Identifying Representative Tags

After clustering images into k clusters, we identify the representative tags for
each cluster. The most representative tags of a cluster are recommended for the
new image. To identify the representative tags of each cluster, we rank the tags
by user frequency in descending order. The rank of a tag is higher if more users
have used it and vice versa. We associate the top s tags to the cluster c, and
represent the set of most representative top s tags associated with a cluster c as
cT .

4.3 Classification and Tag Recommendation

Once we have clustered the images and identified representative tags of these
clusters, we can recommend representative tags of the closest cluster from a
new image. The image is mapped to the cluster, whose centroid is at minimum
distance from the image. Most representative tags associated with the mapped
cluster are assigned to the new image. We assume that we have the geograph-
ical coordinates and low-level features of the new image, but we do not have
tags associated with the new image. In the case of clusters based on geograph-
ical or low-level feature space, we can directly measure the distance between
the geographical or low-level features of the new image and the centroids of the
clusters. But for tag based clustering, we do not have tags for the new image.
Therefore we have to compute the centroids of tag based clusters in terms of
either geographical or low-level features. For clusters based on geographical co-
ordinates, we classify the new image to one of the clusters whose centroid is at
minimum geographical distance from the new image. For low-level clusters, we
classify the new image based on the distance between its low-level features and
cluster centroids. For tag based clusters, as we do not have any tags for the new
image, we classify the new image based on the distance between its geographical



coordinates and the mean of geographical coordinates of the tag based clusters.
The mismatch between feature spaces used for tag based clustering and the new
image negatively effects the results of tags based clustering. To sum up the tag
recommendation process, we list down the recommendation processes in three
steps as follows:

1. Find closest cluster centroid c to the image f (use geographical mean as
cluster centroid for geographical (G) and tag (T ) based clusters; and low-
level mean as cluster centroids for clusters based low-level (L) features)

2. Recommend the tags cT associated with the cluster c to the new image

5 Experiments and Results

In this section the experiments and results are presented. The image dataset is
briefly described in Section 5.1, the distinction between the training and the test
data comes in Section 5.2, which is followed by the evaluation method in Section
5.3. Section 5.4 presents the comprehensive results achieved in our work.

5.1 Image Dataset

CoPhIR dataset [3] consists of images uploaded to Flickr by hundreds of thou-
sands of different users, which makes the dataset very heterogeneous. One can
find images of very different types like portraits, landscapes, people, architec-
ture, screen shots etc. To perform an evaluation on different types of features
(geo-tags, tags, low-level) on a reasonably large scale, we created a subset of
the original CoPhIR dataset. We selected the images taken in national capitals1

of all the world countries. For this purpose, we considered all the images with
Euclidean distance (in terms of latitude and longitude) from center of a capital
city not higher than 0.1. We ignored the capital cities which had less than 1, 000
images; this resulted into a set of 58 cities. To keep the experiments scalable, we
randomly selected 30, 000 images for cities which had more than 30, 000 images.
There were only three such cities Paris, London, and Washington DC. In the
end, we had images of 58 capital cities, ranging from 1, 000 to 30, 000 images with
an average of 8, 000 images per city. Total number of images in our evaluation
dataset was 413, 848. For scalability, particularly for low-level image features,
images are trained and evaluated separately for each city.

Base Line: In order to compare the effectiveness of different image features,
we created a random feature space for the images. We assign a random value
between 0 and 1 to each of the image in dataset as its random feature. We
consider the random features as the baseline for comparison. Same clustering
methods are applied on the random features as on the other features. Random
feature space is uni-dimensional and is represented as D ∈ ℜ.

1 http://en.wikipedia.org/wiki/National_capitals



5.2 Training and Test data

It is important to carefully select the training and test datasets, because when
a user uploads images to Flickr, he can perform batch operations on the set of
images. For example, he can assign same tags or geographical coordinates to all
the images in a batch. It is also possible that the images have similar low-level
features, e.g. if the images belong to a beach or a concert. If we randomly split
the images into test and training datasets, there is a chance that some images
belonging to a user are used for training, while other images of the same user are
used in test dataset for evaluation. Such random split may effect the final results
because a test image might be mapped to a cluster containing images from the
same user, having similar features as the test image. It is very likely that the test
image gets annotated with perfect tags, as tags of both test and training images
were provided by the same user. To make the evaluation transparent, instead
of randomly splitting the resources into training and test dataset, we split the
users. For each city, we use resources of 75% users for training and resources of
25% users as test dataset. No image in the test dataset is annotated by a user
who has also annotated images in the training dataset. After splitting the users
into training and test datasets, we use 310, 590 images for training the system
and 103, 258 images used as ground truth for evaluating the system.

Another aspect of fair evaluation is the quality of the tags. There are some
tags which are very common in both test and training datasets. These tags
mostly represent city or country names, which can be suggested by looking into
a geographical database. Some common tags might not be very specific, e. g.,
the tags geotagged, 2007, travel etc. Very common tags also effect the evaluation
results, as they are abundant in both test and training datasets, and are almost
suggested for every test image. This results into higher precision and recall val-
ues. To make the evaluation more transparent, we do not consider the ten most
frequent tags for each city and we also ignore the frequent tags geotagged and
geotag, because all the images in our dataset are geo-tagged and most of the
images have these two tags. For each city, we also remove the very rare tags
which might be incorrectly spelled tags or tags specific to a particular user. For
this reason, for each city, we ignore those tags which are used by less than three
users.

5.3 Evaluation

We consider the tags associated with the 103, 258 test images as ground truth.
The images in the ground truth are tagged by different users and as there is no
restriction on the selection of tags for a resource, therefore the tags in ground
truth are very noisy. The noise in the data leads to inferior results, but the overall
results show the comparative analysis of different feature spaces. We evaluate
the methods using standard evaluation methods used in information retrieval:
Precision P , Recall R, and F-Measure F . The evaluation measures are defined
as follows:



P =
Number of correctly suggested tags

Number of suggested tags
(5)

R =
Number of correctly suggested tags

Number of expected tags
(6)

F =
2 × P × R

P + R
(7)

In addition to the standard precision and recall measures, we also computed
the macro precision Pm, macro recall Rm, and macro F-Measure Fm over tags
as follows:

Pm =

∑

t∈Tags Suggested

# of times t correctly suggested

# of times t suggested

# of tags suggested
(8)

Rm =

∑

t∈Tags Expected

# of times t correctly suggested

# of times t expected

# of tags expected
(9)

Fm =
2 × Pm × Rm

Pm + Rm

(10)

5.4 Results

The results presented in this section give a comparative view of tag recommen-
dation based on different types of features. The automated evaluation on one
hand provides the possibility to do evaluation on a large scale, but on the other
hand the ground truth (test data) might contain invalid tags. We try to make
the evaluation transparent and more meaningful by filtering certain types of tags
(see Section 5.2). By removing very common tags, there is a certain decrease in
evaluation results, but we believe that filtering make the evaluation fair. We
have also evaluated the results without filtering the dataset, and in that case
even random feature space gives a F-Measure value of 0.42. This is because of
the reason that very common tags are recommended for the test images and
there is always a major overlap between common tags of training and test data.
The precision, recall, and F-Measure values presented in this section might ap-
pear to be low for the reader, but one shall keep in mind the filtering applied on
the dataset to make the evaluation transparent.

Table 2 consists of nine charts (chi∈{1,2,3},j∈{1,2,3}) presenting the experi-
mental results.

Charts in the first row (ch1,j∈{1,2,3}) depict the so called micro average evalu-
ation and were generated in accordance to the evaluation criteria (5), (6), and (7)
respectively. As one can see, in all three cases the results are significantly better



ch1,1 – Micro Precision ch1,2 – Micro Recall ch1,3 – Micro F-Measure

ch2,1 – Macro Precision ch2,2 – Macro Recall ch2,3 – Macro F-Measure

ch3,1 – Micro F-Measure com-
paring results of two differ-
ent low-level features Edge His-
togram Descriptor (EHD) and
Color Layout (CL)

ch3,2 – Micro F-Measure com-
parison of Cosine (Cos) and
Euclidean (Eucl) distances for
tag/text based features

ch3,3 – Micro F-Measure com-
parison of Manhattan (Manh)
and Euclidean (Eucl) distances
for non-text based features. Dark
lines show the results obtained
using Manhattan distance and
gray lines show results obtained
using euclidean distance

Table 2. Result charts (chi∈{1,2,3},j∈{1,2,3}).



when using geo-tags for image description. The performance of the tag recom-
mendation using low-level features and textual tags differs only slightly from the
results based on random clustering. For exactly one tag being recommended, the
precision amounts to: 0.1385 for geo-tags, 0.0502 for low-level features, 0.0451
for textual tags, and 0.0338 for random clustering.

Charts in the second row (ch2,j∈{1,2,3}) present the so called macro average

over tags evaluation and were generated in accordance to the evaluation criteria
(8), (9), and (10) respectively. Similar to the micro average evaluation, the results
here are significantly better for geo-tags, while the performance in case of textual
tags, low-level features, and random clustering is almost the same. For exactly
one tag being recommended, the macro precision for geo-tags amounts to 0.1584,
for low-level features - 0.0521, for textual tags - 0.0414, and the baseline is 0.0312.

In the third row of charts (ch3,j∈{1,2,3}) in Table 2 some further evaluations
can be found. In the first and second row charts (chi∈{1,2},j∈{1,2,3}) the Edge
Histogram Descriptor (EHD) was applied whenever low-level features were used
and cosine similarity was used for tag based feature space. This has got an
experimental reason. As you can see in Chart (ch3,1), the EHD performs slightly
better than the Color Layout (CL) in terms of micro F-Measure and chart (ch3,2)
shows a clear advantage of the cosine distance over the euclidean distance for
tag based features. And finally, Chart (ch3,3) explains why using the simple
Euclidean distance has appeared to be sufficient in our approach. The results
remain almost the same when using Manhattan distance.

6 Conclusion

In our paper, we exploited three kinds of image description techniques, namely
geo-tags, tags, and low-level features, to suggest possible annotations for new
images uploaded to a social tagging system. In order to compare the benefits
each of these description types brings to a tag recommender system on its own,
we investigated them independently of each other. The evaluation was done on
a large-scale image database. For experiments we used the CoPhIR dataset [3]
including images uploaded to Flickr by hundreds of thousands of different users.
The processing chain of our algorithm for generating image annotations contains:
(i) clustering the images, (ii) finding representative tags for the clusters, (iii)
classification of new images and tag recommendation. The results showed that
geo-tags are the most helpful image descriptors for tag recommendation, while
textual tags and low-level features provide only a slightly better performance
than the random baseline.

In the future, we will keep investigating the tag recommendation problem
for large-scale heterogeneous image archives. We will further develop our frame-
work to allow comprehensive experimental studies. We will also investigate the
problem for some more domain dependent data collections.
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7. R. Jäschke, L. Marinho, A. Hotho, L. Schmidt-Thieme, and G. Stumme. Tag rec-
ommendations in folksonomies. Knowledge Discovery in Databases: PKDD 2007,
pages 506–514, 2007.

8. L. Kennedy, M. Naaman, S. Ahern, R. Nair, and T. Rattenbury. How flickr helps
us make sense of the world: context and content in community-contributed media
collections. In MULTIMEDIA ’07: Proceedings of the 15th international conference
on Multimedia, pages 631–640, New York, NY, USA, 2007. ACM.

9. L. S. Kennedy and M. Naaman. Generating diverse and representative image
search results for landmarks. In WWW ’08: Proceeding of the 17th international
conference on World Wide Web, pages 297–306, New York, NY, USA, 2008. ACM.

10. K. Mardia, J. Kent, and J. Bibby. Multivariate Analysis. Academic Press, 1979.
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