
1

DIRECT AND INVERSE INFERENCE IN MUSIC DATABASES:

HOW TO MAKE A TITLE FUNK?

ABSTRACT

We propose an algorithm for exploiting statistical

properties of large-scale metadata databases about

music titles in order to answer various

musicological queries. We introduce two inference

schemes called “direct” and “inverse” inference,

based on an efficient implementation of a kernel

regression approach. We describe an evaluation

experiment conducted on a large-scale database of

fine-grained musical metadata. We use this

database to train the direct inference algorithm, test

it, and also to identify the optimal parameters of the

algorithm. The inverse inference algorithm is based

on the direct inference algorithm. We illustrate it

with some real world examples.

1. Introduction

Large databases of metadata are now available in

many domains of digital content such as music

(allmusic) or films (imdb). However, the scaling up

of content databases makes it increasingly difficult

and expensive to maintain manually these metadata

databases. The apparition of collaborative tagging

addresses this issue by exploiting the power of large

distributed networks of users. However, the basic

issue of maintaining these repositories of

information and coping with their possible

incompleteness remains open.

The aim of our study is to design algorithms to turn

large-scale databases of musical information into

knowledge bases. More precisely, we wish to

exploit these databases to perform statistical

inferences from partial descriptions of items in

order to infer new information about the content.

The inferences we target must be both statistically

coherent with the data and computationally

tractable. The inferences we consider in this study

are of two sorts: direct and inverse. Direct inference

consists in inferring the most plausible value of an

attribute given a set of “observed attributes”. These

inferences can be used typically to lower the

maintenance cost of the database: when new items

are encountered, only a subset of attributes would

then be needed to be observed, and the other ones

could be inferred with some degree of confidence.

Inverse inference answers a different question:

given a set of observed attributes (possibly

complete, i.e. a fully describe title), and a target

attribute value, we wish to know the minimal

modifications to apply to this initial observation set

to reach this target attribute value. ,An application

of direct inference is algorithms for automatic

music categorization. Some attributes like ‘Style

Rap’ or ‘Distorted Guitar’ can be relatively well

estimated from the analysis of the acoustic signal

[2]. However, acoustic classifiers fail to compute

more “high-level” attributes like “Mood sad” or

“Lyrics cynical” with a satisfactory performance.

The idea of such a hybrid approach is to first

compute the best acoustic attributes and, in a

second stage, infer the remaining attributes using

direct inference.

As an example of inverse inference, we can

consider a computer-aided composition tool that

suggests musicians how to modify their

compositions: starting from an initial composition,

the system would observe some “low-level”

attributes. The musician could then ask the system

what attributes to change, and how, in order to, say,

make his title sound “Funk”, or not “aggressive”, or

“harmonious”. Inverse inference yields the minimal

modifications of the initial title to increase

optimally the corresponding probabilities.

In this paper, we propose an algorithm for direct

and inverse inference, based on an efficient

implementation of a kernel regression approach.

We describe an evaluation experiment conducted

on a large-scale database of fine-grained musical

metadata. We use this database to train the direct

inference algorithm, test it, and also to identify the

optimal parameters of the algorithm. Inverse

inference is based on the direct inference algorithm.

We illustrate it with real world examples.

1.1. State-of-the-art

To perform our inferences, we would need ideally a

statistical model of our attributes in the form of a

Bayesian Network, yielding a compact

representation of the underlying distribution of the

attributes. If we had such a model of statistical

independencies, inference would be carried out with

approximate methods suitable for large networks.

We tried to learn such a model of our random

variables with the SBNS algorithm proposed in [3]:

since our data is sparse, we can use frequent sets

(i.e. sets of attributes co-occurring more than some

threshold. For more details, see [1]) to build local

models and add all the edges we obtained in an

edge dump ; edges possibly added to the final

global graph will only be those belonging to this

edge dump (instead of considering all possible

edges. Using frequent sets dramatically decreases

the complexity of the structural learning of a

Bayesian network model, as remarked in [5].

To carry out inferences in the large network we

obtained, we used Mean Field Theory (MFT). MFT

is a statistical physics approximation to solve the

many-body problem. It consists in replacing all

2

interactions to any one body with an average

interaction, turning the �-body problem into ��� � 1�/2-body problems. When applied to

Bayesian Networks for inference, MFT means

estimating the real distribution of the inferred nodes

given the observed nodes with a simpler

distribution; this simpler distribution assumes

independence between inferred nodes given

observed nodes. An efficient implementation of

MFT can be found in [8] and complete details about

variational inference methods in [6].

Unfortunately, the network we obtained was too

densely connected even for MFT to perform in

reasonable time. As an example, the computation of

the MFT equation for one title, given an observable

set, would take approximately 5 minutes, so cross-

validation on our database (described in the next

section) would take about 5 months, which is not

acceptable. In this context, inverse inference would

be even less tractable. However, our database is

probably not as sparse as those used in [3]. This

paper is an attempt to address this challenge.

1.2. Description of the data

For this study we have used a music dataset

comprising 37,000 popular songs of various styles.

Each song is described by 948 binary (0/1 valued)

attributes. Attributes describe low-level information

(like the presence of “acoustic guitar”, or the

“tempo range” of the song) as well as high-level

characteristics (like the “style” of a song, the mood

emerging from it, etc.). The attributes are grouped

in 17 categories: Style, Genre, Musical setup, Main

instruments, Variant, Dynamics, Tempo, Special,

Era/Epoch, Metric, Country, Situation, Mood,

Character, Language, Popularity, and Rhythm. The

complexity of the database makes it impossible to

describe it in details here, but we are only

concerned in this study by the number of attributes

and the quality of the inferences obtained.

The database we considered for this study is sparse:

The mean number of attributes set to true per song

(occupation factor) is 4% (i.e. 40 on a total of 948).

Sparseness suggests the dominant role of the true-

valued attributes versus false-valued attributes for a

given song. Therefore, in the analysis of the

database, our inference algorithm should treat

differently true values and false values. Another

feature of the database is its redundancy. For

instance, attributes like ‘Country Greece’ and

‘Language Greek’ are extremely correlated.

Assuming the 948 attributes are statistically

independent, we can easily compute the entropy of

the database. Let � denote the number of attributes

(�
 948), and ��������� the set of attributes

modelled as 0/1 valued random variables. Let Pr��� denote the underlying probability distribution

of the random vector � (assumed independent).

The entropy of the random vector � is then:

����
 ��log Pr����
 ���logPr�����
�

���

 �� � log � ! �1 � �� log�1 � ��"

�

���

If the distribution of the attributes was totally

random, the database would have entropy of 948 and if it consisted of only one value, its

entropy would be 0. The entropy of our database is 90, so it is very redundant. This justifies the

presence of inter-attribute dependencies, that our

inference algorithm will attempt to exploit.

1.3. Problem Statement

In the context of our Boolean multi-attribute

database, we can formulate our problem as follows.

Let � denote the number of attributes (�
 948),

and ��������� the set of attributes modeled as 0/1 valued random variables. We consider each song

description as a realization of the random vector � and thus denote ��# the value of the $th
 attribute

(1 % $ % �) for the &th
 song (1 % & % �) where �

is the number of songs in the database (�
37,000). Let Pr��� denote the underlying

probability distribution of the random vector �. We

wish to accomplish two tasks:

Direct inference: Given an incomplete description

of a music title, determine the most probable values

of the remaining uninformed attributes. Formally, if

for a subset) * +1, … , �- the observed values of

the attributes .�/0 , … , �/|2|3 (denoted �/) are

.4/0 , … , 4/|2|3 (denoted 4/), we wish to estimate the

most probable values of the non-observed

attributes, i.e. compute: 56 7 argmax87+9,�-:;|2| Pr��/<
 5 | �/
 4/�
Inverse inference: Given an incomplete description

of a music title and target values for a subset of

target attributes, how can one modify the initial

description to achieve the target values with

maximum confidence, with a minimal

modification? Formally, for a subset) * +1, … , �-
and = * +1, … , �- such that) > = is empty, the

observed values of �/ are 4/ and the target fields �? are meant to be 4? , but are not, so we suppose

that Pr��?
 4? | �/
 4/� @ 0.5. Let then CD be

an indicator function with value 1 if � is true, and 0 otherwise. We say that E is a flip of the observed

attributes �/ if: E: +0,1-|/| G +0,1-|/|�H������|/| I JC�K��L�H� ! C�7��L��1 � H��M����|/|
The subset ��E� 7) characterizes the flip E: this

definition means that the flip will inverse its

parameters which index belong to ��E� and leave

the remaining parameters unchanged. The order of

the flip is N�E�
 |��E�|. It represents the number

3

of modifications on the parameter of the flip. Let S

denote the space of all flips (its cardinality is 2|/|).
The inverse inference problem consists in solving

the following combinatorial optimization problem: E6 7 argmaxL7O�N�E� � P Q Pr ��?
 4?| �/
 4/�"
Here P R 0 is a free parameter representing a trade-

off between minimal flip order and maximum

probability of achieving the target state. Since) could be of cardinality up to 947, the search space � is huge so an important feature of our algorithm is

the evaluation speed of this functional form.

2. Direct Inference

In this section we describe our direct inference

algorithm and evaluate its performance.

1. Description of the algorithm

Computing Pr ��/<
 5|�/
 4/� for all 5 7+0,1-�S|/|is combinatorial and computationally

intractable for the dimensions we are dealing with

(� � |)| T 700), so the basic assumption to break

the intractability is that the variables �/<0 , … , �/<|2U| are

independent given �/. It then suffices to compute

separately Pr ��/<V
 1|�/
 4/� for all W 7+1, … , |) <|- to determine the most probable values of

the inferred attributes �/<. Although this assumption

might seem contradictory with our primary aim to

model dependencies, the intuition is that the

inferred �/< attributes only depend on observed

attributes �/, meaning that subjective attributes

emerge solely from objective (possibly acoustic)

attributes that will form our observation). This

independence assumption is less strong as the size

of the observation set grows. However, the choice

of the attributes �/ will have to be dealt with

carefully, and we discuss this issue later on.

To compute Pr ��/<V
 1|�/
 4/� we use a kernel

regression estimator [4] and [7]:

 ̂Y�4/�
 ∑ [\JN�4/ , �/#�M�/<V#]#��∑ [\JN�4/ , �/#�M]#��

where N�4/ , �/#� is a distance function indicating the

‘proximity’ between our observed attributes 4/ and

the corresponding values of attributes �/ for the &-

th song in the database. For instance, N��,�� could be

the Euclidian distance in ^|/| counting the number

of differences between two binary strings passed as

arguments. However, the Euclidian distance treats

equivalently both values 0 and 1. Yet the

sparseness of the data indicates clearly that two

binary strings are more similar if they have

common 1s than if they have common 0s. To

emphasize the important role of common ones, we

rather use the Jaccard distance:

N�H, _�
 NJ�H������` , �_������`M

 ∑ Cabcdb�̀��∑ Cabcdb�̀�� ! ∑ Cab��Cdb���̀��

The numerator is the number of differences

between the two arguments, and the denominator is

composed of two terms: the first one is again the

number of differences and the second term is the

number of “1” the strings have in common. Notice

that for all H, _ 7 ^` 0 % N�H, _� % 1. [\��� is a weighting function with a real parameter e 7 ^f. An obvious property of this function is

that it decreases towards 0 as its parameter

increases. Intuitively, this means that the closer a

song is from our observation 4/ (using distance N)

the greater its weight should be. The integral of the

weighting function [\��� should also be finite.

Notice that the weighting function needs not be

normalized since the estimator ̂Y is already

normalized. A simple choice for [\ is a Gaussian

filter [\�g�
 exp .� kl
\l3 but since e is a free

parameter that we have to tune, a nice property

would be to have an intuitive understanding of the

value e. For example, with a simple linear

decreasing function [\�g�
 .1 � k
\3f, the value

of e is just a threshold distance above which songs

have a weight set to 0, and are thus not taken into

account in the estimation ̂Y . Note that if e m ∞ our

estimator is an empirical mean on all the songs of

the database, each song having identical

importance, no matter the distance. If e m 0fthen

[\�g�
 n1 if g
 00 if g o 0p and we are only estimating the

empirical distribution on the data.

2.1. Evaluation & Experiments

This section introduces experiments to assess the

performance of our algorithm. We also study the

influence of several parameters of the algorithm.

2.1.1. Performance criterion

Our database contains about 4% of song attributes

set to 1. This unbalancedness forbids the use of

precision or recall to assess our classifiers (a dumb

classifier that would always predict an inferred

attribute �/<V to 0 would have an accuracy of 96%).

Instead, we use the F-measure which is more suited

for unbalanced databases. For a given attribute, the

F-measure (for the true class) is defined as the

harmonic mean of precision and recall, s
 tuv
uf v. A

classifier always responding false has a F-measure

of 0.

4

2.1.2. Observed Attributes

In this paragraph we discuss the different choices

for the observation set). The choice can either be

driven by applications, or by performance: if the

goal is to complete an acoustic automatic

categorization system, then there is a canonical

order for all the attributes defined by the decreasing

performance of some acoustic classifier. We call

this order the acoustic order. Another possible

choice for) is the set of modifiable attributes. This

set of observations will be used in the inverse

inference problem and has been determined by

hand: modifiable attributes are low-level attributes

that a musician can easily modify (like instruments,

tempo, etc.). On the other hand, if what we are

looking for is to increase the performance of our

inference algorithm, the choice for) is not obvious.

The simplest way to formulate the problem is to

choose) as one of the subsets of +1, … , �- of fixed

cardinality w maximizing some global performance

criterion x for inference:

)y6 7 argmax/*+�,…,�-|/|�y x z� ̂Y�4/�" ��Y�|/<|{27+9,�-|
}

The arguments of x are all possible responses to an

inference query. The global performance criterion

should ‘integrate’ in a certain sense all possible

inference responses to all 4/ 7 +0,1-y. Of course,

this optimization problem is completely intractable

and we shall restrict our empirical study to the case

of the acoustic and modifiable attributes.

2.1.3. Experiments

In this paragraph, we assess the influence of the

free parameters of the algorithm, namely e and [\

and the influence of the choice of the observation).
The performances were computed using leave-one-

out cross-validation on the whole dataset.

2.1.3.1 Influence of the smoothing parameter

First, we evaluate the influence of the free

parameter e R 0 on the overall performance. In this

experiment, we thus fix the observation) to be

the 100 first attributes in the acoustic order.

On Figure 1, we show the performance of our

algorithm with e varying in the interval �0,1�. The

reason we restrict the search to this interval is

because intuitively we do not want to take into

account all the songs in the database: songs with

large distance (close to 1) should be ignored and, as

we mentioned earlier, e can be interpreted as a

threshold distance. We plotted the F-measure for

several individual attributes versus the smoothing

parameter e on the range �0,1�.
All of the attributes exhibit a bell-shaped F-measure

vs. e curve. This shows that there exists a

maximum of the performance for some optimal

value of the smoothing parameter. The figure also

shows that this optimal value is different from one

attribute to another. If the smoothing parameter was

unique for all attributes and chosen to maximize the

performance of, say, attribute ‘Country France’, the

performance of the attribute ‘Variant Wah-wah’

would be zero whereas it could be near 80% with

an individual fine smoothing tuning. This suggests

that we should use one smoothing parameter per

attribute to achieve maximum performance as

opposed to the classic approach of maximizing a

global performance criterion over all attributes. On

figure 1 we plotted the cumulative distribution

function (cdf) for the set of F-measures (over all

inferred attributes) obtained for several choices of

the smoothing parameter. A perfect classifier would

have a cdf starting at the origin straight to

point �1,0� and from then straight to point �1,1�.

Figure 1: Influence of the smoothing parameter

on the performance of several classifiers.

The worst classifier would have a cdf curve starting

at the origin, straight to point �0,1� and then

straight to point �1,1�. Visually, the best classifier

among our choices for the smoothing parameter is

thus the closest curve to that of the perfect

classifier. Figure 2 confirms that choosing

individually optimized smoothing parameters for

each attribute largely outperforms a global

optimized parameter.

Figure 2: CDF of the F-measures over all inferred

attributes for several choices of smoothing

parameters. We select a unique parameter (for all

attributes) that maximizes the sum of F-measures.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 0.2 0.4 0.6 0.8

F
-m

e
a

su
re

Smoothing parameter θθθθ

Genre

Dancem

usic

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.8 1

C
u

m
u

la
ti

v
e

 D
is

tr
ib

u
ti

o
n

 f
u

n
ct

io
n

F-measure

Individual Optimized Smoothing

Parameter
Unique Optimized Smoothing

Parameter=0,374526
Individual Random Smoothing

Parameters
Unique Smoothing Parameter =

0,5
Unique Smoothing Parameter =

1,0

5

2.1.3.2 Influence of the weighting function

A well-known fact of kernel regression is that the

choice of the smoothing parameter e is more

important than the choice of the weighting function.

To confirm this in our case, we computed the

performances for all inferred attributes for several

functional forms for [\ and where e was optimally

chosen for each attribute as discussed above. The

observation) is still the first 100 attributes in the

acoustic order. On Figure 3, we plotted the cdf for

each set of F-measures obtained for several choices

of the weighting function.

Figure 3: CDF of F-measures for several functional

forms of the weighting function and for individual

optimized smoothing parameters. We also plotted

the cdf of the F-measures for random choice of the

smoothing parameters.

Figure 3 shows that although there is a slight

performance increase for the Gaussian function

over other functional forms (with individually

optimized smoothing parameters), the improvement

is negligible compared to the performance of a

classifier with Gaussian weighting function and

random choice for the smoothing parameters.

Clearly, the choice of the smoothing parameters is

critical and no particular effort should be dedicated

to the choice of the weighting function. We thus

choose to use the linear weighting function, as

discussed in the algorithm description, since

exponentials are expensive to compute. Linear

weighting functions are a rather good tradeoff

between performance and time.

2.1.3.3 Choice of the distance

To assess the choice of our distance, we compare

the performance of our algorithm using the Jaccard

distance and the Euclidian distance. Although

computing an Euclidian distance is slightly faster

than computing a Jaccard distance, the gain in

performance is worth it: on Figure 4 we plotted the

cdf for the Hamming and Jaccard algorithms with

individual optimal smoothing parameters and a

Gaussian weighting function.

Figure 4: CDF of the F-measures of inferred

attributes for the Hamming or Euclidian distance

and the Jaccard-based distance.

2.1.3.4 Choice of the observation

The last parameter that may impact the quality of

the inference is the observation set). For the

acoustic order, we would like to confirm the

intuition that as |)| increases, the overall

performance converges towards an upper limit. On

Figure 5 we plotted the cdf of the F-measures over

all inferred attributes for several values of |)|. It can

be seen that although there is an improvement of

the performance for small values of |)|, there is a

‘glass ceiling’ for the classifier’s performance.

Figure 5: CDF of the F-measures of all inferred

attributes for several values of the size of the

observation I.

3. Inverse Inference

3.1. Description

As mentioned earlier, the observation is fixed when

performing inverse inference so) is the set of

modifiable attributes, meaning all low-level

attributes and of which we can easily think of as

attributes that a musician can easily change in a

song: instruments, tempo, language, etc. Some

other attributes are clearly not that easily modifiable

like the “mood” of the song, or its “style”. These

more subjective attributes are supposed to “emerge”

from the observation. The modifiable attributes set

is of cardinality 232. So there are 2t~t possible

flips of the observation. To reduce this search

space, we introduce the following heuristic: recall

that there are categories in which all attributes can

be grouped. For instance, all sorts of moods (calm,

aggressive, dreamy, etc.) can be grouped in one

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.8 1

C
u

m
u

la
ti

v
e

 D
is

tr
ib

u
ti

o
n

 F
u

n
ct

io
n

F-measure

Uniform

Linear

Quadratic

Gaussian

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

C
u

m
u

la
ti

v
e

 D
is

tr
ib

u
ti

o
n

F
u

n
ct

io
n

F-measure

Jackard

Distance

0

0.5

1

0 0.2 0.4 0.6 0.8 1

C
u

m
u

la
ti

v
e

D
is

tr
ib

u
ti

o
n

 F
u

n
ct

io
n

F-measure

|I|=50

|I|=85

|I|=120

|I|=137

6

category. In each category we define a limit to the

number of true attributes. This limit is determined

using the statistical distribution of the number of

true attributes per category on the songs of the

database. The limit we fix is the 90%-quantile of

this distribution for each category. If the initial

state 4/ does not respect these limits once flipped,

the flip will not be evaluated. We call 4/-authorized

flips such flips and �{2 the subset of authorized

flips. The problem we will solve as an

approximation of the general inverse inference

problem we mentioned earlier is the following:

E6 7 argmaxL7O�2 �N�E�
� P� ̂Y�4/�{VJ1 � ̂Y�4/�M�S{V

�7� �
The product is just the estimated value of Pr��?
4?|�/
 4/� .

Do

 flip = get next authorized flip

 If (fitness(flip) is one of the M best

fitness’s of order 1)

 Then add flip to M best flip list

Until no more authorized flips of order 1

For k=2..max order Do

 flip = get next authorized flip

 If flip contains same attributes as at least

an element of M best flip list

 And fitness(flip) is one of the M best

 Then add flip to temporary M best flip list

 Until no more authorized flips of order k

 M best flip list = temporary M best flip list

End For

Table 1. The inverse inference algorithm.

We finally explore the search space with the

following strategy: we scan through the 4/-
authorized order 1 flips and evaluate their fitness;

we select the � best authorized order 1 flips (�is a

parameter of the approximation method). We then

loop on the order of the flip, and only consider 4/-
authorized flips that contain the same attributes as

at least one of the M best flips of previous order,

and update the � best flip list (Table 1).

3.2. Examples

We illustrate here inverse inference with an

example. We tried to make “Black or White” by

Michael Jackson sound ‘Funk’ (its style was

initially tagged as ‘Pop’ and ‘Rock/Pop’). We set

tradeoff parameter P
 1000 so that in the

optimization process, an additional modification is

only accepted if it increases the probability of being

‘Funk’ by at least 0.01. This ‘Probability of Target’

is the probability of being ‘Funk’ given the 232

modifiable attributes of the song “Black or White”

(or its flipped version). Initially, this probability is

about 0.05 and even though we are not sure the flip

we found is optimal, it yields a probability of being

‘Funk’ of about 0.87 which is much better. The set

of attributes to flip is the following:

Main Instruments Vocals (Choir)=false

Variant forming/shaping=true

Main Instruments Voice (Effects/Sample)=true

Main Instruments SFX (Sound Effects)=true

Rhythm funky=true

To confirm the funkiness of the song has been

increased, we can verify that within the nearest

neighbors (NN) of the modified song there are more

‘Funk’ songs than initially. Among the 20 NN of

the initial “Black or White”, 4 songs are tagged as

“Funk”. Among the 20 NN of its flipped version,

11 songs tagged as “Funk”. So the algorithm is

indeed able to translate the high-level query “more

funk” into a minimal set of low-level modifications.

4. Conclusion

We have presented an attribute inference algorithm

for large-scale Boolean databases. The algorithm

produces optimally plausible inferences in

reasonable time. The algorithm can also be used to

perform inverse inference, i.e. answering questions

about how to modify an initial description to make

it fit optimally a given attribute. The algorithm is

particularly well suited to the management and

exploitation of metadata databases, both for

traditional search applications, and for applications

that exploit these databases for creation purposes.

As such, it can be seen as a first step in turning

these databases into knowledge bases.

5. References

[1] Agrawal, R., & Srikant, R. (1994). Fast

Algorithms for Mining Association Rules. Proc.

20th Int. Conf. Very Large Data Bases, {VLDB}

(pp. 487-499). Morgan Kaufmann.

[2] Aucouturier, J.-J., Pachet, F., Roy, P., &

Beurivé, A. (2007). Signal + Context = Better

Classification. Proc. of ISMIR 07.

[3] Goldenberg, A., & Moore, A. (2004). Tractable

Learning of Large Bayes Net Structures from

Sparse Data. Proc. of the 21
st
 int. conf. on Machine

learning. New-York: ACM Int. Conf. Proc. Series.

[4] Nadaraya, E. (1964). On estimating regression.

Theor. Probab. Appl. , 9, 141-142.

[5] Pavlov, D., Mannila, H., & Smyth, P. (2001).

Beyond independence: Probabilistic models for

query approximation on binary transaction data.

Technical report ICS TR-01-09, Information and

Computer Science Department. UC Irvine.

[6] Wainwright, M., & Jordan, M. (2003).

Graphical models, exponential families, and

variational inference.

[7] Watson, G. (1964). Smooth regression analysis.

Sankhya , A (26), 359-372.

[8] Winn, J. M., & Bishop, C. M. (2005).

Variational Message Passing. Journal of Machine

Learning , 6, 661-694.

