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DIRECT AND INVERSE INFERENCE IN MUSIC DATABASES: 

HOW TO MAKE A TITLE FUNK? 

 
 

ABSTRACT 

We propose an algorithm for exploiting statistical 

properties of large-scale metadata databases about 

music titles in order to answer various 

musicological queries. We introduce two inference 

schemes called “direct” and “inverse” inference, 

based on an efficient implementation of a kernel 

regression approach. We describe an evaluation 

experiment conducted on a large-scale database of 

fine-grained musical metadata. We use this 

database to train the direct inference algorithm, test 

it, and also to identify the optimal parameters of the 

algorithm. The inverse inference algorithm is based 

on the direct inference algorithm. We illustrate it 

with some real world examples. 

1. Introduction 

Large databases of metadata are now available in 

many domains of digital content such as music 

(allmusic) or films (imdb). However, the scaling up 

of content databases makes it increasingly difficult 

and expensive to maintain manually these metadata 

databases. The apparition of collaborative tagging 

addresses this issue by exploiting the power of large 

distributed networks of users. However, the basic 

issue of maintaining these repositories of 

information and coping with their possible 

incompleteness remains open. 

The aim of our study is to design algorithms to turn 

large-scale databases of musical information into 

knowledge bases. More precisely, we wish to 

exploit these databases to perform statistical 

inferences from partial descriptions of items in 

order to infer new information about the content. 

The inferences we target must be both statistically 

coherent with the data and computationally 

tractable. The inferences we consider in this study 

are of two sorts: direct and inverse. Direct inference 

consists in inferring the most plausible value of an 

attribute given a set of “observed attributes”. These 

inferences can be used typically to lower the 

maintenance cost of the database: when new items 

are encountered, only a subset of attributes would 

then be needed to be observed, and the other ones 

could be inferred with some degree of confidence. 

Inverse inference answers a different question: 

given a set of observed attributes (possibly 

complete, i.e. a fully describe title), and a target 

attribute value, we wish to know the minimal 

modifications to apply to this initial observation set 

to reach this target attribute value. ,An application 

of direct inference is algorithms for automatic 

music categorization. Some attributes like ‘Style 

Rap’ or ‘Distorted Guitar’ can be relatively well 

estimated from the analysis of the acoustic signal 

[2]. However, acoustic classifiers fail to compute 

more “high-level” attributes like “Mood sad” or 

“Lyrics cynical” with a satisfactory performance. 

The idea of such a hybrid approach is to first 

compute the best acoustic attributes and, in a 

second stage, infer the remaining attributes using 

direct inference. 

As an example of inverse inference, we can 

consider a computer-aided composition tool that 

suggests musicians how to modify their 

compositions: starting from an initial composition, 

the system would observe some “low-level” 

attributes. The musician could then ask the system 

what attributes to change, and how, in order to, say, 

make his title sound “Funk”, or not “aggressive”, or 

“harmonious”. Inverse inference yields the minimal 

modifications of the initial title to increase 

optimally the corresponding probabilities. 

In this paper, we propose an algorithm for direct 

and inverse inference, based on an efficient 

implementation of a kernel regression approach. 

We describe an evaluation experiment conducted 

on a large-scale database of fine-grained musical 

metadata. We use this database to train the direct 

inference algorithm, test it, and also to identify the 

optimal parameters of the algorithm. Inverse 

inference is based on the direct inference algorithm. 

We illustrate it with real world examples. 

1.1. State-of-the-art 

To perform our inferences, we would need ideally a 

statistical model of our attributes in the form of a 

Bayesian Network, yielding a compact 

representation of the underlying distribution of the 

attributes. If we had such a model of statistical 

independencies, inference would be carried out with 

approximate methods suitable for large networks. 

We tried to learn such a model of our random 

variables with the SBNS algorithm proposed in [3]: 

since our data is sparse, we can use frequent sets 

(i.e. sets of attributes co-occurring more than some 

threshold. For more details, see [1]) to build local 

models and add all the edges we obtained in an 

edge dump ; edges possibly added to the final 

global graph will only be those belonging to this 

edge dump (instead of considering all possible 

edges. Using frequent sets dramatically decreases 

the complexity of the structural learning of a 

Bayesian network model, as remarked in [5]. 

To carry out inferences in the large network we 

obtained, we used Mean Field Theory (MFT). MFT 

is a statistical physics approximation to solve the 

many-body problem. It consists in replacing all 
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interactions to any one body with an average 

interaction, turning the �-body problem into ��� � 1�/2-body problems. When applied to 

Bayesian Networks for inference, MFT means 

estimating the real distribution of the inferred nodes 

given the observed nodes with a simpler 

distribution; this simpler distribution assumes 

independence between inferred nodes given 

observed nodes. An efficient implementation of 

MFT can be found in [8] and complete details about 

variational inference methods in [6]. 

Unfortunately, the network we obtained was too 

densely connected even for MFT to perform in 

reasonable time. As an example, the computation of 

the MFT equation for one title, given an observable 

set, would take approximately 5 minutes, so cross-

validation on our database (described in the next 

section) would take about 5 months, which is not 

acceptable. In this context, inverse inference would 

be even less tractable. However, our database is 

probably not as sparse as those used in [3]. This 

paper is an attempt to address this challenge.  

1.2. Description of the data 

For this study we have used a music dataset 

comprising 37,000 popular songs of various styles. 

Each song is described by 948 binary (0/1 valued) 

attributes. Attributes describe low-level information 

(like the presence of “acoustic guitar”, or the 

“tempo range” of the song) as well as high-level 

characteristics (like the “style” of a song, the mood 

emerging from it, etc.). The attributes are grouped 

in 17 categories: Style, Genre, Musical setup, Main 

instruments, Variant, Dynamics, Tempo, Special, 

Era/Epoch, Metric, Country, Situation, Mood, 

Character, Language, Popularity, and Rhythm. The 

complexity of the database makes it impossible to 

describe it in details here, but we are only 

concerned in this study by the number of attributes 

and the quality of the inferences obtained. 

The database we considered for this study is sparse: 

The mean number of attributes set to true per song 

(occupation factor) is 4% (i.e. 40 on a total of 948). 

Sparseness suggests the dominant role of the true-

valued attributes versus false-valued attributes for a 

given song. Therefore, in the analysis of the 

database, our inference algorithm should treat 

differently true values and false values. Another 

feature of the database is its redundancy. For 

instance, attributes like ‘Country Greece’ and 

‘Language Greek’ are extremely correlated. 

Assuming the 948 attributes are statistically 

independent, we can easily compute the entropy of 

the database. Let � denote the number of attributes 

(� 
 948), and ��������� the set of attributes 

modelled as 0/1 valued random variables. Let Pr��� denote the underlying probability distribution 

of the random vector �  (assumed independent). 

The entropy of the random vector � is then: 

 

���� 
 ��log Pr���� 
 ���logPr�����
�

���

 �� � log  � ! �1   �  �� log�1 �  ��"

�

���
 

If the distribution of the attributes was totally 

random, the database would have entropy of 948 and if it consisted of only one value, its 

entropy would be 0. The entropy of our database is 90, so it is very redundant. This justifies the 

presence of inter-attribute dependencies, that our 

inference algorithm will attempt to exploit. 

1.3. Problem Statement 

In the context of our Boolean multi-attribute 

database, we can formulate our problem as follows. 

Let � denote the number of attributes (� 
 948), 

and ��������� the set of attributes modeled as 0/1 valued random variables. We consider each song 

description as a realization of the random vector � and thus denote ��# the value of the $th
 attribute 

(1 % $ % �) for the &th
 song (1 % & % �) where � 

is the number of songs in the database (� 
37,000). Let Pr��� denote the underlying 

probability distribution of the random vector �. We 

wish to accomplish two tasks: 

Direct inference: Given an incomplete description 

of a music title, determine the most probable values 

of the remaining uninformed attributes. Formally, if 

for a subset ) * +1, … , �- the observed values of 

the attributes .�/0 , … , �/|2|3 (denoted �/) are 

.4/0 , … , 4/|2|3 (denoted 4/), we wish to estimate the 

most probable values of the non-observed 

attributes, i.e. compute: 56 7 argmax87+9,�-:;|2| Pr��/< 
 5 | �/ 
 4/� 
Inverse inference: Given an incomplete description 

of a music title and target values for a subset of 

target attributes, how can one modify the initial 

description to achieve the target values with 

maximum confidence, with a minimal 

modification? Formally, for a subset ) * +1, … , �- 
and = * +1, … , �- such that ) > = is empty, the 

observed values of �/ are  4/ and the target fields �? are meant to be 4? , but are not, so we suppose 

that Pr��? 
 4? | �/ 
 4/� @ 0.5. Let then CD be 

an indicator function with value 1 if  � is true, and 0 otherwise. We say that E is a flip of the observed 

attributes �/ if: E: +0,1-|/| G +0,1-|/|�H������|/| I JC�K��L�H� ! C�7��L��1 � H��M����|/| 
The subset ��E� 7 ) characterizes the flip E: this 

definition means that the flip will inverse its 

parameters which index belong to ��E� and leave 

the remaining parameters unchanged. The order of 

the flip is N�E� 
 |��E�|. It represents the number 



3 

of modifications on the parameter of the flip. Let S 

denote the space of all flips (its cardinality is 2|/|). 
The inverse inference problem consists in solving 

the following combinatorial optimization problem: E6 7 argmaxL7O�N�E� � P Q Pr ��? 
 4?| �/
 4/�" 
Here P R 0 is a free parameter representing a trade-

off between minimal flip order and maximum 

probability of achieving the target state. Since ) could be of cardinality up to 947, the search space � is huge so an important feature of our algorithm is 

the evaluation speed of this functional form. 

2. Direct Inference 

In this section we describe our direct inference 

algorithm and evaluate its performance. 

1. Description of the algorithm 

Computing Pr ��/< 
 5|�/ 
 4/� for all 5 7+0,1-�S|/|is combinatorial and computationally 

intractable for the dimensions we are dealing with 

(� � |)| T 700), so the basic assumption to break 

the intractability is that the variables �/<0 , … , �/<|2U| are 

independent given �/. It then suffices to compute 

separately Pr ��/<V 
 1|�/ 
 4/� for all W 7+1, … , |) <|- to determine the most probable values of 

the inferred attributes �/<. Although this assumption 

might seem contradictory with our primary aim to 

model dependencies, the intuition is that the 

inferred �/< attributes only depend on observed 

attributes �/, meaning that subjective attributes 

emerge solely from objective (possibly acoustic) 

attributes that will form our observation ). This 

independence assumption is less strong as the size 

of the observation set grows. However, the choice 

of the attributes �/ will have to be dealt with 

carefully, and we discuss this issue later on. 

To compute Pr ��/<V 
 1|�/ 
 4/� we use a kernel 

regression estimator [4] and [7]: 

 ̂Y�4/� 
  ∑ [\JN�4/ , �/#�M�/<V#]#��∑ [\JN�4/ , �/#�M]#��  

where N�4/ , �/#� is a distance function indicating the 

‘proximity’ between our observed attributes 4/ and 

the corresponding values of attributes �/ for the &-

th song in the database. For instance, N��,�� could be 

the Euclidian distance in ^|/| counting the number 

of differences between two binary strings passed as 

arguments. However, the Euclidian distance treats 

equivalently both values 0 and 1. Yet the 

sparseness of the data indicates clearly that two 

binary strings are more similar if they have 

common 1s than if they have common 0s. To 

emphasize the important role of common ones, we 

rather use the Jaccard distance:  

N�H, _� 
 NJ�H������` , �_������`M

 ∑ Cabcdb�̀��∑ Cabcdb�̀�� ! ∑ Cab��Cdb���̀��

 

 

The numerator is the number of differences 

between the two arguments, and the denominator is 

composed of two terms: the first one is again the 

number of differences and the second term is the 

number of “1” the strings have in common. Notice 

that for all H, _ 7 ^` 0 % N�H, _� % 1. [\��� is a weighting function with a real parameter  e 7 ^f. An obvious property of this function is 

that it decreases towards 0 as its parameter 

increases. Intuitively, this means that the closer a 

song is from our observation 4/  (using distance N) 

the greater its weight should be. The integral of the 

weighting function [\��� should also be finite. 

Notice that the weighting function needs not be 

normalized since the estimator   ̂Y is already 

normalized. A simple choice for [\  is a Gaussian 

filter [\�g� 
 exp .� kl
\l3 but since e is a free 

parameter that we have to tune, a nice property 

would be to have an intuitive understanding of the 

value e. For example, with a simple linear 

decreasing function [\�g� 
 .1 � k
\3f, the value 

of e is just a threshold distance above which songs 

have a weight set to 0, and are thus not taken into 

account in the estimation  ̂Y . Note that if e m ∞ our 

estimator is an empirical mean on all the songs of 

the database, each song having identical 

importance, no matter the distance. If e m 0fthen 

[\�g� 
 n1 if g 
 00 if g o 0p and we are only estimating the 

empirical distribution on the data. 

2.1. Evaluation & Experiments 

This section introduces experiments to assess the 

performance of our algorithm. We also study the 

influence of several parameters of the algorithm. 

2.1.1. Performance criterion 

Our database contains about  4% of song attributes 

set to 1. This unbalancedness forbids the use of 

precision or recall to assess our classifiers (a dumb 

classifier that would always predict an inferred 

attribute �/<V to  0 would have an accuracy of 96%). 

Instead, we use the F-measure which is more suited 

for unbalanced databases. For a given attribute, the 

F-measure (for the true class) is defined as the 

harmonic mean of precision and recall, s 
 tuv
uf v. A 

classifier always responding false has a F-measure 

of 0.  
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2.1.2. Observed Attributes 

In this paragraph we discuss the different choices 

for the observation set ). The choice can either be 

driven by applications, or by performance: if the 

goal is to complete an acoustic automatic 

categorization system, then there is a canonical 

order for all the attributes defined by the decreasing 

performance of some acoustic classifier. We call 

this order the acoustic order. Another possible 

choice for  ) is the set of modifiable attributes. This 

set of observations will be used in the inverse 

inference problem and has been determined by 

hand: modifiable attributes are low-level attributes 

that a musician can easily modify (like instruments, 

tempo, etc.). On the other hand, if what we are 

looking for is to increase the performance of our 

inference algorithm, the choice for ) is not obvious. 

The simplest way to formulate the problem is to 

choose ) as one of the subsets of +1, … , �- of fixed 

cardinality w maximizing some global performance 

criterion x for inference: 

)y6 7 argmax/*+�,…,�-|/|�y  x z� ̂Y�4/�" ��Y�|/<|{27+9,�-|
} 

The arguments of x are all possible responses to an 

inference query. The global performance criterion 

should ‘integrate’ in a certain sense all possible 

inference responses to all 4/ 7 +0,1-y. Of course, 

this optimization problem is completely intractable 

and we shall restrict our empirical study to the case 

of the acoustic and modifiable attributes. 

2.1.3.  Experiments 

In this paragraph, we assess the influence of the 

free parameters of the algorithm, namely e and [\ 

and the influence of the choice of the observation ). 
The performances were computed using leave-one-

out cross-validation on the whole dataset. 

2.1.3.1 Influence of the smoothing parameter 

First, we evaluate the influence of the free 

parameter e R 0 on the overall performance. In this 

experiment, we thus fix the observation ) to be 

the 100 first attributes in the acoustic order.  

On Figure 1, we show the performance of our 

algorithm with e varying in the interval �0,1�. The 

reason we restrict the search to this interval is 

because intuitively we do not want to take into 

account all the songs in the database: songs with 

large distance (close to 1) should be ignored and, as 

we mentioned earlier, e can be interpreted as a 

threshold distance. We plotted the F-measure for 

several individual attributes versus the smoothing 

parameter e on the range �0,1�.  
All of the attributes exhibit a bell-shaped F-measure 

vs. e curve. This shows that there exists a 

maximum of the performance for some optimal 

value of the smoothing parameter. The figure also 

shows that this optimal value is different from one 

attribute to another. If the smoothing parameter was 

unique for all attributes and chosen to maximize the 

performance of, say, attribute ‘Country France’, the 

performance of the attribute ‘Variant Wah-wah’ 

would be zero whereas it could be near 80% with 

an individual fine smoothing tuning. This suggests 

that we should use one smoothing parameter per 

attribute to achieve maximum performance as 

opposed to the classic approach of maximizing a 

global performance criterion over all attributes. On 

figure 1 we plotted the cumulative distribution 

function (cdf) for the set of F-measures (over all 

inferred attributes) obtained for several choices of 

the smoothing parameter. A perfect classifier would 

have a cdf starting at the origin straight to 

point �1,0� and from then straight to point �1,1�.  

 

Figure 1: Influence of the smoothing parameter 

on the performance of several classifiers. 

The worst classifier would have a cdf curve starting 

at the origin, straight to point �0,1� and then 

straight to point �1,1�. Visually, the best classifier 

among our choices for the smoothing parameter is 

thus the closest curve to that of the perfect 

classifier. Figure 2 confirms that choosing 

individually optimized smoothing parameters for 

each attribute largely outperforms a global 

optimized parameter. 

 

Figure 2: CDF of the F-measures over all inferred 

attributes for several choices of smoothing 

parameters. We select a unique parameter (for all 

attributes) that maximizes the sum of F-measures. 
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2.1.3.2 Influence of the weighting function 

A well-known fact of kernel regression is that the 

choice of the smoothing parameter e is more 

important than the choice of the weighting function. 

To confirm this in our case, we computed the 

performances for all inferred attributes for several 

functional forms for [\  and where e was optimally 

chosen for each attribute as discussed above. The 

observation ) is still the first 100 attributes in the 

acoustic order. On Figure 3, we plotted the cdf for 

each set of F-measures obtained for several choices 

of the weighting function. 

 
Figure 3: CDF of F-measures for several functional 

forms of the weighting function and for individual 

optimized smoothing parameters. We also plotted 

the cdf of the F-measures for random choice of the 

smoothing parameters. 

 

Figure 3 shows that although there is a slight 

performance increase for the Gaussian function 

over other functional forms (with individually 

optimized smoothing parameters), the improvement 

is negligible compared to the performance of a 

classifier with Gaussian weighting function and 

random choice for the smoothing parameters. 

Clearly, the choice of the smoothing parameters is 

critical and no particular effort should be dedicated 

to the choice of the weighting function. We thus 

choose to use the linear weighting function, as 

discussed in the algorithm description, since 

exponentials are expensive to compute. Linear 

weighting functions are a rather good tradeoff 

between performance and time. 

2.1.3.3 Choice of the distance 

To assess the choice of our distance, we compare 

the performance of our algorithm using the Jaccard 

distance and the Euclidian distance. Although 

computing an Euclidian distance is slightly faster 

than computing a Jaccard distance, the gain in 

performance is worth it: on Figure 4 we plotted the 

cdf for the Hamming and Jaccard algorithms with 

individual optimal smoothing parameters and a 

Gaussian weighting function.  

 

Figure 4: CDF of the F-measures of inferred 

attributes for the Hamming or Euclidian distance 

and the Jaccard-based distance. 

2.1.3.4 Choice of the observation 

The last parameter that may impact the quality of 

the inference is the observation set ). For the 

acoustic order, we would like to confirm the 

intuition that as |)| increases, the overall 

performance converges towards an upper limit. On 

Figure 5 we plotted the cdf of the F-measures over 

all inferred attributes for several values of |)|. It can 

be seen that although there is an improvement of 

the performance for small values of |)|, there is a 

‘glass ceiling’ for the classifier’s performance.  

 

Figure 5: CDF of the F-measures of all inferred 

attributes for several values of the size of the 

observation I. 

 

3. Inverse Inference 

3.1. Description 

As mentioned earlier, the observation is fixed when 

performing inverse inference so ) is the set of 

modifiable attributes, meaning all low-level 

attributes and of which we can easily think of as 

attributes that a musician can easily change in a 

song: instruments, tempo, language, etc. Some 

other attributes are clearly not that easily modifiable 

like the “mood” of the song, or its “style”. These 

more subjective attributes are supposed to “emerge” 

from the observation. The modifiable attributes set 

is of cardinality 232. So there are 2t~t possible 

flips of the observation. To reduce this search 

space, we introduce the following heuristic: recall 

that there are categories in which all attributes can 

be grouped. For instance, all sorts of moods (calm, 

aggressive, dreamy, etc.) can be grouped in one 
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category. In each category we define a limit to the 

number of true attributes. This limit is determined 

using the statistical distribution of the number of 

true attributes per category on the songs of the 

database. The limit we fix is the 90%-quantile of 

this distribution for each category. If the initial 

state 4/  does not respect these limits once flipped, 

the flip will not be evaluated. We call 4/-authorized 

flips such flips and �{2  the subset of authorized 

flips. The problem we will solve as an 

approximation of the general inverse inference 

problem we mentioned earlier is the following: 

E6 7 argmaxL7O�2 �N�E�
� P� ̂Y�4/�{VJ1 �  ̂Y�4/�M�S{V

�7� � 
The product is just the estimated value of Pr��? 
4?|�/ 
 4/� . 
 
Do  

  flip = get next authorized flip 

  If ( fitness(flip) is one of the M best 

fitness’s of order 1 ) 

  Then add flip to M best flip list  

Until no more authorized flips of order 1 

For k=2..max order Do 

    flip = get next authorized flip 

    If flip contains same attributes as at least 

an element of M best flip list 

    And fitness(flip) is one of the M best  

    Then add flip to temporary M best flip list 

  Until no more authorized flips of order k 

  M best flip list = temporary M best flip list 

End For 

Table 1. The inverse inference algorithm. 

We finally explore the search space with the 

following strategy: we scan through the 4/-
authorized order 1 flips and evaluate their fitness; 

we select the � best authorized order 1 flips (�is a 

parameter of the approximation method). We then 

loop on the order of the flip, and only consider 4/-
authorized flips that contain the same attributes as 

at least one of the M best flips of previous order, 

and update the  � best flip list (Table 1). 

3.2. Examples 

We illustrate here inverse inference with an 

example. We tried to make “Black or White” by 

Michael Jackson sound ‘Funk’ (its style was 

initially tagged as ‘Pop’ and ‘Rock/Pop’). We set 

tradeoff parameter P 
 1000 so that in the 

optimization process, an additional modification is 

only accepted if it increases the probability of being 

‘Funk’ by at least 0.01. This ‘Probability of Target’ 

is the probability of being ‘Funk’ given the 232 

modifiable attributes of the song “Black or White” 

(or its flipped version). Initially, this probability is 

about 0.05 and even though we are not sure the flip 

we found is optimal, it yields a probability of being 

‘Funk’ of about 0.87 which is much better. The set 

of attributes to flip is the following:  

Main Instruments Vocals (Choir)=false 

Variant forming/shaping=true 

Main Instruments Voice (Effects/Sample)=true 

Main Instruments SFX (Sound Effects)=true 

Rhythm funky=true 

To confirm the funkiness of the song has been 

increased, we can verify that within the nearest 

neighbors (NN) of the modified song there are more 

‘Funk’ songs than initially. Among the 20 NN of 

the initial “Black or White”, 4 songs are tagged as 

“Funk”. Among the 20 NN of its flipped version, 

11 songs tagged as “Funk”. So the algorithm is 

indeed able to translate the high-level query “more 

funk” into a minimal set of low-level modifications. 

4. Conclusion 

We have presented an attribute inference algorithm 

for large-scale Boolean databases. The algorithm 

produces optimally plausible inferences in 

reasonable time. The algorithm can also be used to 

perform inverse inference, i.e. answering questions 

about how to modify an initial description to make 

it fit optimally a given attribute. The algorithm is 

particularly well suited to the management and 

exploitation of metadata databases, both for 

traditional search applications, and for applications 

that exploit these databases for creation purposes. 

As such, it can be seen as a first step in turning 

these databases into knowledge bases. 
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