
  

 

HIT SONG SCIENCE IS NOT YET A SCIENCE 
   

   

ABSTRACT 

We describe a large-scale and complete experiment 

aiming at validating the hypothesis that the popularity of 

music titles can be learnt using global acoustic or human 

features. We use a 32.000 title database with 632 

manually-entered attributes per titles including 3 related to 

the popularity of the title. We design an experiment with 

two different audio feature sets, as well as the set of all the 

manually-entered attributes but the popularity ones. The 

experiments show clearly that although some subjective 

attributes may indeed be reasonably well learned by these 

techniques, it is not the case for popularity. This 

contradicts recent and sustained claims made in the MIR 

community as well as in the media about the existence of 

a so-called “Hit Song Science”. 

1. INTRODUCTION 

The goal of many popular music artists is to create songs 

that people will like. But music hits are as popular as they 

are mysterious: it is very difficult, in general, to tell why a 

given song has become, or not, a hit. Nevertheless, recent 

claims have been made in the community of MIR, as well 

in the general media, of a possibility to predict if a song 

will be a hit, using machine-learning techniques. In 

particular, [4] describe an experiment in which a system is 

trained to learn a mapping between various musical 

features extracted from the acoustic signal and from the 

lyrics, and the popularity (hitness) of the song. They 

conclude from this experiment that their system learns 

indeed something about popularity, and so that Hit Song 

Science is indeed possible. 

However, the idea that popularity can be inferred from 

such low-level features contradicts the natural intuitions of 

any musically-trained listener. Indeed, the experiment 

described by [4] was performed on a relatively small 

database (1700 songs). Additionally they used rudimentary 

features, mostly based on timbre.  

In this paper, we describe a larger-scale and more 

complete experiment designed to further validate this 

claim. We use a 32.000 song database of popular music 

titles, associated with fine-grained human metadata, in the 

spirit of the Pandora effort. To ensure that the experiment 

is not biased, we use three sets of different features. We 

describe the various experiments conducted and conclude 

that popularity is basically not learned by any of these 

feature sets. 

2. EXTRACTING GLOBAL DESCRIPTORS 

The most widely used approach to extract global 

information from acoustic signals is to identify feature 

sets, supposed to be representative of musical information 

contained in the signal, and to train classifiers such as 

SVMs on Training set, using manually annotated data, aka 

ground truth. These classifiers are then tested, typically on 

other data sets (the Test set), and their performance is 

evaluated. If the experiment is performed without biases, a 

good performance of the classifier means that the features 

considered do carry some information pertaining to the 

classification problem at hand.  

In this paper we describe an experiment similar in sprit to 

that of [4] on a 32,000 song database. We use three 

different feature sets to train our classifiers: a generic 

acoustic set à la Mpeg-7, a specific acoustic set using 

proprietary algorithms, and a set of high-level metadata 

produced by humans. These feature sets are described in 

the next sections. 

2.1. Generic Audio Features 

The first feature set we consider is related to the so-called 

bag-of-frame (BOF) approach. The BOF approach owns 

his success to its simplicity and generality, as it can be, and 

has been, used for virtually all possible global descriptor 

problems. The BOF approach consists in modelling the 

audio signal as the statistical distribution of audio features 

computed on individual, short segments. Technically, the 

signal is segmented into successive, possibly overlapping 

frames, from which a feature vector is computed. The 

features are then aggregated together using various 

statistical methods, varying from computing the 

means/variance of the features across all frames to more 

complex modelling such as Gaussian Mixture Models 

(GMMs). In a supervised classification context, these 

aggregated features are used to train a classifier. The BOF 

approach can be parameterized in many ways: frame 

length and overlap, choice of features and feature vector 

dimension, choice of statistical reduction methods 

(statistical moments or Gaussian Mixture Models), and 

choice of the classifier (Decision Trees, Support Vector 

Machines, GMM classifiers, etc.). Many papers in the MIR 

literature report experiments with variations on BOF 

parameters on varied audio classification problems [1], 

[12], [14], [5], [8]. Although perfect results are rarely 

reported, these works demonstrate that the BOF approach 

is relevant for extracting a wide range of global music 

descriptors. 



  

 

The generic feature set we consider here consists of 49 

audio features taken mostly from the Mpeg-7 audio 

standard [7]. This set includes spectral characteristics 

(Spectral Centroid, Kurtosis and Skewness, HFC, MFCC 

coefficients), temporal (ZCR, Inter-Quartile-Range), and 

harmonic (Chroma). These features are intentionally 

chosen for their generality, i.e. they do not contain specific 

musical information nor musically ad hoc algorithms. 

Various experiments (not reported here for space 

limitations) were performed to yield the optimal BOF 

parameters for this feature set: localization and duration of 

the signal, statistical aggregation operators used to reduce 

dimensionality, frame size and overlap. The best trade-off 

between accuracy and computation time is achieved with 

the following parameters: 2048 sample frames with a 50% 

overlap computed on a 2-minute signal extracted from the 

middle part of the title, the features are the two first 

statistical moments of this distribution, i.e. the mean and 

variance, are considered, yielding a total feature vector of 

dimension 98 (49 means + 49 variances). 

2.2. Specific Audio Features 

The specific approach consists in training the same (SVM) 

classifier with a set of “black-box” acoustic features 

developed especially for popular music analysis tasks by 

Sony Corporation. These proprietary features have been 

used in commercial applications such as hard disk based 

Hi-Fi systems. Altogether, the specific feature set also 

yields a feature vector of dimension 98, which guaranties a 

fair comparison with the generic feature set. As opposed to 

the generic set, the specific set does not use the BOF 

approach: each feature is computed on the whole signal, 

possibly integrating specific musical information. For 

instance, one feature describes the proportion of perfect 

cadences (i.e. resolutions in the main tonality) in the whole 

title. Another one represents the proportion of percussive 

sounds to harmonic sounds. We cannot provide here a 

detailed description of these features as we are mostly 

interested in comparing the performances of acoustic 

classifiers on two reasonable, but different feature sets. 

2.3. Human Features 

Lastly, we trained a classifier with human-generated 

features. More precisely, we used the attributes provided 

by our manually annotated database (HiFind, see following 

section), to infer the popularity attribute. We used 632 

Boolean attributes to train the classifiers. This is not 

directly comparable to the 98 audio features as these 

attributes are Boolean (and as float values). However, as 

we will see, these features are good candidate for carrying 

high-level and precise musical information that are 

typically not well learnt from audio features.  

3. THE HIFIND DATABASE 

3.1. A Controlled Categorization Process 

Several databases of annotated music have been proposed 

in the MIR community, such as the RWC database [6], the 

various databases created for the Ismir contests [3]. 

However, none of them has the scale and number of 

attributes needed to test our hypothesis. For this study we 

have used a music and metadata database provided by the 

HiFind Company (tm). This database is a part of an effort 

to create and maintain a large repository of fine-grained 

musical metadata to be used in various music distribution 

systems, such as playlist generation, recommendation, 

advanced music browsing, etc. The HiFind attributes are 

binary (0/1 valued) for each song. They are grouped in 16 

categories, representing a specific dimension of music: 

Style, Genre, Musical setup, Main instruments, Variant, 

Dynamics, Tempo, Era/Epoch, Metric, Country, Situation, 

Mood, Character, Language, Rhythm and Popularity. 

Attributes describe a large range of musical information: 

objective information such as the “presence of acoustic 

guitar”, or the “tempo range” of the song, as well as more 

subjective characteristics such as “style”, “character” or 

“mood” of the song. The Popularity category contains 

three (Boolean) attributes, low, medium and high. It 

represents the popularity of the title, as observed e.g. from 

hit charts and records of music history. These three 

attributes are, in principle, mutually exclusive. 

The categorization process at work at HiFind is highly 

controlled. Each title is listened to entirely by one 

categorizer. Attributes to be set to true are selected using 

an ad’hoc categorization software. Attribute categories are 

considered in some specific order. Within a category, some 

rules may apply that prevent some combinations of 

attributes to be selected. The time taken, for a trained 

categorizer, to categorize a single title is about 6 minutes. 

The categorized titles are then considered by a 

categorization supervisor, who checks, among other things, 

aspects such as consistency and coherence to ensure that 

the description ontologies are well-understood and utilized 

consistently across the categorization team. Although 

errors and inconsistencies can be made during this process, 

it nevertheless guaranties a relative good “quality” and 

consistency of the metadata, as opposed for instance to 

collaborative tagging approaches in which there is no 

supervision. Additionally the metadata produced is 

extremely precise (up to 948 attributes can be considered 

per title), a precision which is difficult to achieve with 

collaborative tagging approaches. 

There is no systematic way to ensure that the 

categorization produces absolutely correct and consistent 

information, so we had to consider the database as it was 

provided as ground truth. Some minor “clean up” was 

performed before use, by discarding titles with metadata of 

obviously of low quality. For instance, we discarded songs 



  

 

having much less attributes set to “true” than the average 

(37). Additionally, we kept only those attributes for which 

we had a significant amount of titles (above 20) with the 

true and false values, to build training and testing sets of 

sufficient size. As a result of this cleanup, the total number 

of titles considered in this study is 32978, and the number 

of attributes 632. (Note that those attributes correspond to 

the 632 human features for the experiment described in 

Section 2.3) Acoustic signals were given in the form of a 

wma file at 128 kbps. This database was used both for 

training our classifiers and for testing them, as described in 

Section 4.1. 

3.2. Database Redundancy 

The HiFind database is sparse: the mean number of 

attributes set to true per song (occupation factor) is 5.8% 

(i.e. 37 on a total of 632). Sparseness suggests the 

dominant role of the true-valued attributes compared to 

false-valued attributes for a given song. It is also 

redundant. For instance, attributes ‘Country Greece’ and 

‘Language Greek’ are well correlated. More precisely, 

assuming the 632 attributes are statistically independent, 

we can easily compute the entropy of the database [13]. 

Let � denote the number of attributes (� � 632), and 

��	
��	�
 the set of attributes modeled as 0/1 valued 

random variables. Let Pr��
 denote the underlying 

probability distribution of the random vector � (assumed 

independent). The entropy of the random vector � is then: 

���
 � ��log Pr��

 ����log Pr��	





	��
 

���
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If the distribution of the attributes was totally random, the 

database would have an entropy of 632 and if it consisted 

of only one value, its entropy would be 0. Applying this 

formula yields a value of 124 for our database. This high 

redundancy is a sign of the presence of many inter-

attribute dependencies that justifies the deployment of a 

statistical approach to attribute inference [13]. This 

redundancy justifies the attempt to infer some attributes 

from others as explained in Section 2.3.  

3.3. Assessing Classifiers 

To avoid the problems inherent to the sole use of precision 

or recall, the traditional approach is to use F-Measure to 

assess the performance of classifiers. For a given attribute, 

the recall   is the proportion of positive examples (i.e. the 

titles that are true for this attribute) that were correctly 

predicted. The precision ! is the proportion of the 

predicted positive examples that were correct. When the 

proportion of positive examples is high compared to that of 

negative examples, the precision will usually be artificially 

very high and the recall very low, regardless of the actual 

quality of the classifier. The F-measure addresses this issue 

and is defined as: 

" � 2 #  # !  �  !$  

However, in our case, we have to cope with a particularly 

unbalanced 2-class (True and False) database. So the mean 

value of the F-measure for each class (True and False) can 

still be artificially good. To avoid this bias, we assess the 

performance of our classifiers with the more demanding 

min F-measure, defined as the minimum value of the F-

measure for the positive and negative cases. A min-F-

measure near 1 for a given attribute really means that the 

two classes (True and False) are well predicted. 

4. EXPERIMENT 

4.1. Experiment Design 

We first split the HiFind database in two “balanced” parts 

Train and Test, so that Train contains approximately the 

same proportion of examples and counter-examples for 

each attributes as Test. We obtained this state by 

performing repeated random splits until a balanced 

partition was observed. We trained three classifiers, one 

for each feature set (generic, specific and human). These 

classifiers all used a Support Vector Machine (SVM) 

algorithm with a Radial-Basis Function (RBF) kernel, and 

were trained and tested using Train and Test. More 

precisely, each classifier, for a given attribute, is trained on 

a maximally “balanced” subset of Train, i.e. the largest 

subset of Train with the same number of “True” and 

“False” titles for this attribute (popularity Low, Medium 

and High). In practice the size of these individual train 

databases varies from 20 to 16320. This train database size 

somehow represents the “grounding” of the corresponding 

attribute. The classifiers are then tested on the whole Test 

base. Note that the Test base is usually not balanced with 

regards to a particular attribute, which justifies the use of 

the min-F-measure to assess the performance of each 

classifier. 

4.2. Random Oracles 

In order to assess precisely the performance of our 

classifiers, we compare them to random oracles. A random 

oracle is a classifier that yields a random but systematic 

answer, solely based on the distribution of examples in the 

training set. A naive random oracle that would always 

draw the most represented class could have a non-zero 

(mean) F-measure, but its min-F-measure would be 0, by 

definition. Therefore, we defined a less naive random 

oracle for our comparison as follows: given an attribute 

with p positive examples (and therefore N-p negative ones, 

with N the size of the sample set), this oracle returns true 

with a probability p/N. By definition, the min-F-measure 



  

 

of a random oracle only depends on the proportion of 

positive and negative examples in the test database. 

Roughly speaking, when using our random oracle, an 

attribute with balanced positive and negative instances has 

a min-F-measure of approximately 50%, whereas an 

attribute with 200 positive examples (and therefore around 

16,000 negative examples) has a min-F-measure of 2.3%. 

So the performance of the random oracle is a good 

indicator of the size of the database, and can therefore be 

used for comparing classifiers as we will see below. 

4.3. Evaluation of the Performance of Acoustic Classifiers 

4.3.1. Comparison with random oracles 

The comparison of the performance of acoustic classifiers 

with random oracles shows that the classifiers do indeed 

learn something about many of the HiFind attributes. More 

than 450, out of 632, are better learned with the acoustic 

classifiers than with our random oracle. Table 1 indicates, 

for each feature set, the distribution of the relative 

performances of acoustic classifiers with regards to 

random oracles. 

 
Improvement Specific Generic 

50 8 0 

40 12 15 

30 43 20 

20 111 79 

10 330 360 

0 128 158 

Table 1 Number of attributes for which an acoustic 

classifier improves over a random classifier by a certain 

amount. Column “Improvement” reads as follows: there 

are 111 attributes for which a specific acoustic classifier 

outperforms a random classifier by +20 (in min-F-

measure). 

Table 1 also shows that around 130 to 150 attributes lead 

to low-performance classifiers, i.e. acoustic classifiers that 

do not perform significantly better than a random oracle 

(the last row of the table); approximately half of the 

attributes lead to classifiers that improve over the 

performance of a random classifier by less than 10; the rest 

(top rows) clearly outperform a random oracle, i.e. they are 

well-modeled by acoustic classifiers. 

4.3.2. Distribution of performances for acoustic classifiers 

At this point, it is interesting to look at the distribution of 

the performances of these acoustic classifiers. These 

performances vary from 0% for both feature sets to 74% 

for the generic features and 76% for the specific ones. The 

statistical distribution of the performances is close to a 

power law distribution, as illustrated by the log-log graph 

of Figure 1. 
 

 

Figure 1. Log-log graph of the distribution of the 

performance of acoustic classifiers for both feature sets. 

Triangles (resp. diamonds) correspond to acoustic 

classifiers trained on generic (resp. specific) features. The 

dotted (resp. plain) line is a linear regression for the 

classifiers trained on generic (resp. specific) features. 

This graph shows that the distribution of the performance 

of classifiers is close to a power law (with more data 

fluctuation as we reach high performance, which can be 

due to the small number of attributes considered, i.e. 

attributes well-modeled by an acoustic classifier). 

These power laws suggest that a natural organization 

process is taking place in the representation of human 

musical knowledge, and that the process of automatic 

audio classification maintains this organization. 

4.3.3. Specific features slightly outperform generic features 

Not surprisingly, we can see that specific features perform 

always better than the generic ones. This is illustrated by 

Figure 2. Since the classifiers are both based on the same 

SVM/kernel, the difference can only come from 1) the 

actual features extracted or 2) the aggregation method. For 

the generic features, the aggregation is based on means and 

averages over all the segments of the song. For the specific 

features, the aggregation is ad hoc. 

 

Figure 2. Performance of acoustic classifiers. The dotted 

and plain lines correspond to generic and specific 

features respectively. The horizontal axis shows the min-

F-measure of the acoustic classifiers. The left-hand (resp. 
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right-hand) side of the graph corresponds to attributes 

poorly-modeled (resp. well-modeled) by acoustic 

classifiers. The dotted line is slightly above the plain line 

except at the rightmost side. This shows there are more 

acoustic classifiers with poor performance when using 

generic features, and conversely, more with good 

performance when using specific features. 

4.3.4. Acoustic classifiers perform better for large training 

sets 

Lastly, we can observe the relationship between the 

performance and the size of the training set. The trend 

lines in Figure 3 show that the performances of acoustic 

classifiers increase with the training dataset size, 

regardless of the feature set. This is consistent with the 

acknowledged fact that machine-learning algorithms 

require large numbers of training samples, especially for 

high-dimensional feature sets. 

 

Figure 3. The relative performances of the 632 acoustic 

classifiers (i.e. the difference between the min-F-

measures of the acoustic classifier and of the 

corresponding random classifier) for specific and generic 

features, as a function of the training database size. The 

plain curves correspond to specific features and the 

dotted curves to generic features. The smooth lines are 

trend-lines (moving average over 30 values). This graph 

shows that the performance of the acoustic classifiers 

increases with the size of the training database. 

These experiments show that acoustic classifiers definitely 

learn some musical information, with varying degrees of 

performance. It also shows that the subjective nature of the 

attribute do not seem to influence their capacity to be 

learned by audio features. For instance, the attribute 

“Mood nostalgic” is learnt with the performances of 48% 

(specific features), and 43% (generic features), to be 

compared to the 6% of the random oracle. Similarly, 

attribute “Situation evening mood” is learnt with 62% and 

56% respectively, against 36% for random. So popularity 

is, a priori, a possible candidate for this task. 

4.4. Inference from Human Data 

This double feature experiment is complemented by 

another experiment in which we train a classifier using all 

the HiFind attributes but the Popularity ones. This is 

justified by the low entropy of the database as discussed in 

Section 3.2. Contrarily to the acoustic classifiers, we do 

not present here the performances of the classifiers for all 

HiFind attributes. Indeed, some pairs of HiFind attributes 

are perfectly well correlated so this scheme works 

perfectly for those, but this result is not necessarily 

meaningful (e.g. to infer the country from the language).  

The same Train / Test procedure described above applied 

with the 629 non-popularity attributes as input yields the 

following result (min-F-measure): 41% (Popularity-Low), 

37% (Popularity-Medium) and 3% (Popularity-High). 

4.5. Summary of Results for Inferring Popularity 

The results concerning the Popularity attributes are 

summarized in Table 2. 

Popularity 

Attribute 

Generic 

Audio 

Features 

Specific 

Audio 

Features 

Corrected 

Specific 

Human 

Features 

Random 

Oracle 

Low  36 35 31 41 27 

Medium  36 34 38 37 22 

High 4 3 3 3 3 

Table 2 The performances (min-F-measures) of the 

various classifiers for the three Popularity attributes. No 

significant improvement on the random oracle is 

observed. 

 

These results show clearly that the Popularity category is 

not well modelled by acoustic classifiers: its mean 

performance is ranked fourth on all the (632) attributes 

considered, but with the second lowest maximum value 

among categories. 

Although these performances appear to be not so bad at 

least for the “Low” attribute, the comparison with the 

associated random classifiers shows that popularity is in 

fact practically not learnt. Incidentally, these performances 

are not improved with the correction scheme, a method 

that exploits inter-relations between attributes to correct 

the results [11], in the spirit of the contextual approach 

described in [2]. 

Interestingly, the use of human features (all HiFind 

attributes) does not show either any significant 

performance.  

Lastly, we also considered a priori irrelevant information 

to train our classifiers: the letters of the song title, i.e. a 

feature vector of size 26, containing the number of 

occurrences of each letter in the song title. The 

performances of the corresponding classifiers are 

respectively 32% 28% and 3% (for the low, medium and 
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high popularity attributes). This shows that even dumb 

classifiers can slightly improve the performances of 

random classifiers (by 5% in this case for the medium and 

low popularity attributes), but that this information does 

not teach us anything about the nature of hits. 

These results suggest that there are no significant statistical 

patterns concerning popularity using these features sets. 

5. DISCUSSION 

We have shown that the notion of music popularity (or 

hitness) of a song cannot be learnt by using state-of-the-art 

machine learning techniques with two sets of reasonable 

audio features. This result is confirmed when using 

supposedly higher-level human metadata. This large-scale 

evaluation, using the best machine-learning techniques 

available to our knowledge, contradicts the claims of “Hit 

Song Science”, i.e. that the popularity of a music title can 

be learned effectively from known features of music titles, 

either acoustic or human. We think that these claims are 

either based on spurious data or on biased experiments. 

This experiment is all the more convincing that some 

other subjective attributes can indeed be learnt reasonably 

well using the features sets described here (e.g. the “mood 

nostalgic” attribute. 

This experiment does not mean, however, that popularity 

cannot be learnt from the analysis of a music signal or 

from other features. It rather suggests that the features 

used commonly for music analysis are not informative 

enough to grasp anything related to such subjective 

aesthetic judgments. Current works are in progress to 

determine what are “good” features, in particular works 

using analytical features [10], which have been shown to 

outperform manually designed audio features for specific 

analysis tasks (see e.g. the classification of dog barks, [9]). 

However, more work remains to be done to understand 

what are good features of even simpler musical objects 

such as sounds or monophonic melodies. Hit song science 

is not yet a science, but a wide open field. 
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