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Executive Summary

The objective of this deliverable is the set up of several protocols of data analysis to be performed
on the raw datasets delivered by WP1, particularly focusing on the graph point of view. A data
analysis protocol is defined by:

(a) indicating suitable quantitative measures on the raw data sets;

(b) acquiring software tools for performing the measures;

(c) extracting relevant statistical information characterizing the analyzed datasets.

In this deliverable, we will especially concentrate on analyzing the properties of the graph used to
represent folksonomies. Informations about how emergent metadata statistics in folksonomies may
be analyzed is available in D4.1 (TAGora, 2007) while the analysis of clustering social properties
in folksonomies will be covered in detail by D3.2 at a later stage of the project.

We will start with developing a common notion of folksonomies whose main constituents are the
users, tags and resources. Together with the tag assignments of a user to a resource they form a
three-mode network or hypergraph. Because most of the already available measures are defined
for one-mode and two-mode networks we also provide suitable projections for transforming the
folksonomy hypergraph to such networks.

Further, we will analyze the emergence of common semantics by exploring trends in the folkson-
omy. We present a technique for analyzing the evolution of topic-specific trends. The approach
is based on our FolkRank algorithm, a differential adaptation of the PageRank algorithm to the
tri-partite hypergraph structure of a folksonomy.

After that, we will identify relevant measures for analyzing the topology of the network or graph
representation of folksonomies, i.e. its structural properties. The analysis of topological properties
is especially known from the area of social network analysis (SNA). Typical examples of SNA mea-
sures that are to be described in this deliverable are the clustering coefficient and the characteristic
path length in a graph. The original measures were designed in the case of one-mode graphs, i.e.
graphs with only one kind of nodes. We are proposing adapted measures that can be directly
applied to the three-mode graph of folksonomies.

We use further relevant measures borrowed from complex network theory, like the cumulative
strength distribution and the the average nearest neighbor strength, to analyze the topological
properties of the folksonomy hypergraph and the tag co-occurrence network, which we get by
projecting the hypergraph to a one-mode network. We will show that folksonomy graphs exhibit
small-world properties and that the structure of the tag co-occurrence graph is not only influenced
by the underlying tag distributions but that it also reflects the semantics of the tags.

The small-world property is well-known from social network analysis and it means that one can
reach from every node in a graph with very few links any other node in the graph. The small-world
property of folksonomies directly influences the browsing experience of a user because it means
that the user can start any node (e.g. a specific resource) and reach each other resource in the
system with very few clicks by simply browsing e.g. the tags attached to the resource.
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With the help of the analysis of the tag co-occurrence graph we were successful in spotting
and detecting spamming activities by some (pseudo)-users in systems like del.icio.us and
Bibsonomy. The spam detection is thus a direct benefit for the users of tagging systems, which
arises from the measures described in this deliverable.

We analyzed the structure of the semantic space defined by a given set of resources and dis-
covered the existence of well defined communities of resources corresponding to semantically
separated tag clouds. On the other hand these communities also correspond to communities of
users. This points in the direction of an effective cooperation among the users to efficiently map
the semantic space with meaningful and, whenever possibly, not overlapping set of tags. A prelim-
inary study is also presented, where we aim at bridging the FolkRank procedure with community
detection algorithms in networks.

The semantics contained in the tag co-occurrence graph of folksonomies can also be exploited in
a second way by the T-ORG system that helps a user to automatically assign tags and resources
to several predefined categories like location or person. By categorizing tags and organizing them
into hierarchies it is possible to improve the browsing experience of the users.

In this deliverable we were not only successful in identifying relevant features of the systems under
study, but also in exploiting a set of measures that might provide future improvements in the design
of large tagging systems.

2007 c© Copyright lies with the respective authors and their institutions
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Chapter 1

Introduction

TAGora is a project sponsored by the Future and Emerging Technologies program of the Euro-
pean Community (IST-034721) focusing on the semiotic dynamics of online social communities.
A new paradigm is quickly gaining impact in large-scale information systems: Folksonomies. In
applications like Flickr, Connotea, Citeulike, Del.icio.us, etc. people no longer make passive use of
online resources - they take on an active role and enrich resources with semantically meaningful
information. Such information consists of terminology (or "tags") freely associated by each user to
resources and is shared with users of the online community. Despite its intrinsic anarchist nature,
the dynamics of this terminology system spontaneously leads to patterns of terminology common
to the whole community or to subgroups of it. Surprisingly, this emergent and evolving semiotic
system provides a very efficient navigation system through a large, complex and heterogeneous
sea of information.

Our project proposes visionary and high risk research aimed at giving a scientific foundation to
these developments, so contributing to the growth of the new field of Semiotic Dynamics. Semiotic
Dynamics studies how semiotic relations can originate, spread, and evolve over time in popula-
tions, by combining recent advances in linguistics and cognitive science with methodological and
theoretical tools of complex systems and computer science.

The project aims at exploiting the unique opportunity offered by the availability of enormous amount
of data. This goal will be achieved through: (a) a systematic and rigorous gathering of data that
will be made publicly available to the consortium and to the scientific community; (b) designing and
implementing innovative tools and procedures for data analysis and mining; (c) constructing suit-
able modeling schemes which will be implemented in extensive numerical simulations. We aim in
this way at providing a virtuous feedback between data collection, analysis, modeling, simulations
and (whenever possible) theoretical constructions, with the final goal to understand and engineer
the Semiotic Dynamics of on line social systems.

1.1 The challenges

To successfully navigate one’s way in a sea of information, one needs a system of fixed points, a
coordinate system and maps. In most current day large-scale information systems (e.g. enterprise-
resource planning systems, knowledge management systems) the coordinate system is given by
some kind of ontology, the fixed points are given by annotations that describe documents or other
data, while the map is produced by connecting ontology and annotations.

Unfortunately, this system becomes less and less workable as it concerns ever larger-scale in-
formation systems. On the one hand, the top down architecture of the system does not respond
flexibly enough to the needs of the users who plow the sea of information. On the other hand,
anarchical approaches mostly do not work either, because without organization of ontologies and
annotations one ends up with plenty of information systems that live completely independently
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from each other and cannot be joined for useful exploitation. For instance the distributed creation
of taxonomies and tags and the multiplicity of conceptual schemata generate the well known prob-
lem of semantic interoperability. One solution is to standardize. The different users of a collective
information system could all agree a priori to use the same taxonomies to structure their data and
to use the same conceptual schemata for their data and meta-data. The tags in the owner tax-
onomies can then act as a shared communication protocol between peers. Unfortunately such a
standardization approach is unlikely to work for truly open-ended collective information systems
in rapidly changing domains like music file sharing, picture exchange, medical imaging, scientific
papers, etc.

1.2 The opportunity

This project aims to contribute to the economic development of the Community by advancing the
state of the art in Complexity Science as relevant to IT and by exploring highly novel IT applications
based on Science of Complexity. In particular, the project takes at its starting point that there has
been a massive increase in the amount of autonomy and information flow and in the number of
people that are participating in IT processes. Moreover there is a pressing need that information
systems become ever more adaptive to user needs and rapidly expanding infrastructures. Conse-
quently, there is a much higher interdependence of actors than in the past and various properties
observed in complex systems (such as self-organized criticality) are now also observed in infor-
mation systems. In particular, the focus of this project bears direct relevance to fundamental and
applicative problems that are currently attracting the attention of researchers from different fields,
ranging from multi-agent systems to knowledge-management, from the semantic web to peer-to-
peer content distribution. This is possible because of two general traits explicitly addressed and
investigated by this project:

1.2.1 Expected impact

The project includes partners who have a proven record of excellence in developing and pub-
lishing research results in their respective scientific areas. One of the primary objectives of this
project is to bring together two communities: researchers in various domains of complex systems
and researchers in various areas of Information Technology (computer science, web technolo-
gies, ubiquitous computing), in particular those facing the challenge of Semiotic Dynamics in on
line social communities. The impact that we seek on the scientific community is potentially enor-
mous because it goes beyond the specific scientific objectives and technologies focused on in this
project. We want to foster a general movement towards the interrelation of complex systems and
Information Technology by showing successful examples of cooperation and by posing and solv-
ing concrete non-trivial problems. It is only by seeing clear examples that we expect the scientific
research community to follow suit. These clear successful research examples will be documented
and presented through regular scientific communication channels so that they are accessible to
the community at large.

1.3 Structure of this Deliverable

In this deliverable we will set up of several protocols for the analysis of the raw datasets deliv-
ered by WP1. A data analysis protocol is defined by (i) indicating suitable quantitative measures
on the raw data sets, (ii) acquiring software tools for performing the measures and (iii) extracting
relevant statistical information characterizing the analyzed datasets. In this deliverable, we will es-
pecially concentrate on analyzing the topological properties of the graph used for representing folk-
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sonomies. Information about how emergent metadata statistics can be analyzed for folksonomies
is available in (TAGora, 2007). The analysis of clustering social properties in folksonomies will be
covered in detail by D3.2 at a later stage of the project.

In chapter 2 we will start with developing a common notion of folksonomies whose main con-
stituents are the users, tags and resources. Together with the tag assignments of a user to a
resource they form a three-mode network or hypergraph. Because most of the already available
measures are defined for one-mode and two-mode networks we also provide suitable projections
for transforming the folksonomy hypergraph to such networks.

In chapter 3, we will identify relevant measures for analyzing the topology of the network or graph
representation of folksonomies, i.e. its structural properties. The analysis of topological proper-
ties is especially known from the areas of complex networks (Albert and Barabási, 2001; Borner
et al., 2007; Dorogovtsev and Mendes, 2003; Newman, 2003; Pastor-Satorras and Vespignani,
2004) and social network analysis (SNA). Typical examples of such measures are the clustering
coefficient and the characteristic path length in a graph, which will be described in this deliverable.
We will furthermore describe relevant measures borrowed from complex network theory, like the
cumulative strength distribution and the the average nearest neighbor strength. The measures will
be used for showing that folksonomy hypergraphs exhibit small-world properties. As a side effect,
the statistical measures identified atypical spurious contributions, as the activity of spam users. In
such a case, this allows to easily filter away the corresponding undesired information.

More interestingly, the structure of the tag co-occurrence graph is reflects the semantics of tags. In
fact, trivial frequency effects, related to the linguistic nature of tags, are responsible only partially
for the scale-free character of the graph. More subtle properties, as is assortative nature, are
strongly semantics dependent.

Semantics surely represent the most interesting information hidden in the metadata contributed by
the users. The chance to extract a commonly shared tag semantics is one of the most appealing
possibility offered by folksonomy systems. As a first step in this direction, we analyzed the structure
of the semantic space defined by a given set of resources and found the existence of well defined
communities of resources corresponding to semantically separated tag clouds. We do this applying
recent spectral techniques for cluster identification.

In chapter 4, we will analyze the emergence of common semantics from a different point of view,
i.e. by exploring trends in the folksonomy. We present a technique for analyzing the evolution of
topic-specific trends. The approach is based on our FolkRank algorithm (Hotho et al., 2006a), a dif-
ferential adaptation of the PageRank algorithm (Brin and Page, 1998) to the tri-partite hypergraph
structure of a folksonomy.

The two approaches, trend detection and the cluster identification, are not necessarily so different.
In a preliminary study, we show that Folkrank and a known cluster detection algorithm (MCL) give
comparable results.

Always in the direction of bridging the gap between folksonomies and semantic web, we will de-
scribe in chapter 5 a system called T-ORG. T-ORG automatically classifies the resources of a
tagging system into predefined categories and thus can provide a better browsing experience to
the user. To this aim, the T-ORG system classifies the tags into categories using its pattern library,
categories extracted from a given ontology and Google search results.

In appendix A, we will provide a list of tools that can be used to perform the above described
measures and that can help to exploit some of the features underlying the tagging systems.

1.4 Dissemination of the Results

Parts of this deliverable have been published as follows:
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• Chapter 3 is partially based on (Schmitz et al., 2007), while Section 3.4 is part of a work
submitted to ECCS 2007, European Conference on Complex Systems — Dresden October
1-5.

• Chapter 2 is partially based on (Hotho et al., 2006a) and (Schmitz et al., 2006). Section 4.4
was presented as a talk at the DPG Conference, Section Dynamics and Statistical Physics,
Ranking and Community detection in unweighted networks, Spring Meeting of the German
Physical Society (DPG), Regensburg (Germany), March 26-30th, 2007.

• Chapter 4 is partially based on (Hotho et al., 2006b). The work has been done in collabora-
tion with the EU FP6 IP ‘Nepomuk – Social Semantic Desktop’.

• Chapter 5 is partially based on (Abbasi et al., 2007).
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Chapter 2

Folksonomy structure

Social resource sharing systems are web-based systems that allow users to upload their re-
sources, and to label them with arbitrary words, so-called tags. The systems can be distinguished
according to what kind of resources are supported. Flickr, for instance, allows the sharing of pho-
tos, del.icio.us the sharing of bookmarks, CiteULike1 and Connotea2 the sharing of bibliographic
references, and 43Things3 even the sharing of goals in private life. The BibSonomy,4 system,
which is further developed in the context of TAGora, allows to share simultaneously bookmarks
and BibTex entries (see Fig. 2.1).

The activity of users interacting with a collaborative tagging system consists of either navigating
the existing body of resources by using tags, or of adding new resources. In order to add a new
resource into the system the user is prompted for a reference to the resource and a set of tags
to associate with it. Thus, the basic unit of information in a collaborative tagging system is a
({tags}, user, resource) triple, referred to as post. Further, each post can be split in
multiple tag assignments (TAS), according on the number of tags in it. A post typically contains a
temporal marker recording the (physical) time of the tagging event, so that temporal ordering can
be preserved in storing and retrieving posts.

The collection of all tag assignments of a user are called his personomy, the collection of all
personomies constitutes the folksonomy. The user can explore his personomy, as well as the
personomies of the other users, in all dimensions: for a given user one can see all resources he
had uploaded, together with the tags he had assigned to them (see Fig. 2.1); when clicking on a
resource one sees which other users have uploaded this resource and how they tagged it; and
when clicking on a tag one sees who assigned it to which resources.

2.1 Folksonomies – A Definition

A folksonomy describes the users, resources, and tags, and the user-based assignment of tags
to resources. We present here a formal definition of folksonomies, which is also underlying the
BibSonomy system. In Fig. 2.2 one can see the hypergraph representation of a folksonomy as it
is defined in Def. 1.

Definition 1 A folksonomy is a tuple F := (U, T,R, Y,≺) where

• U , T , and R are finite sets, whose elements are called users, tags and resources, resp.,

• Y is a ternary relation between them, i. e., Y ⊆ U × T × R, called tag assignments (TAS
for short), and

1http://www.citeulike.org/
2http://www.connotea.org/
3http://www.43things.com/
4http://www.bibsonomy.org

http://www.citeulike.org/
http://www.connotea.org/
http://www.43things.com/
http://www.bibsonomy.org
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Figure 2.1: Bibsonomy displays bookmarks and BibTeX based bibliographic references simultane-
ously.

• ≺ is a user-specific subtag/supertag-relation, i. e., ≺⊆ U × T × T , called subtag/supertag
relation.

The personomy Pu of a given user u ∈ U is the restriction of F to u, i. e., Pu := (Tu, Ru, Iu,≺u)
with Iu := {(t, r) ∈ T × R | (u, t, r) ∈ Y }, Tu := π1(Iu), Ru := π2(Iu), and ≺u:= {(t1, t2) ∈
T × T | (u, t1, t2) ∈≺}, where πi denotes the projection on the ith dimension.

Users are typically described by their user ID, and tags may be arbitrary strings. What is considered
as a resource depends on the type of system. For instance, in del.icio.us, the resources are URLs,
and in flickr, the resources are pictures. From an implementation point of view, resources are
internally represented by some ID.

In this paper, we do not make use of the subtag/supertag relation for sake of simplicity. I. e.,
≺= ∅, and we will simply note a folksonomy as a quadruple F := (U, T,R, Y ). This struc-
ture is known in Formal Concept Analysis (Ganter and Wille, 1999; Wille, 1982) as a triadic con-
text (Lehmann and Wille, 1995; Stumme, 2005). An equivalent view on folksonomy data is that
of a tripartite (undirected) hypergraph G = (V,E), where V = U ∪̇T ∪̇R is the set of nodes, and
E = {{u, t, r} | (u, t, r) ∈ Y } is the set of hyperedges.

Certain computations are not applicable on hypergraphs. A transformation into a simple undi-
rected graph GO = (V,EO) is realized by splitting up each hyperedge into three weighted edges
connecting the respective user, tag, and resource such that the weight of an edge is the num-
ber of original hyperedges between the connected nodes. EO = EO

UT ∪ EO
UR ∪ EO

TR with
EO

UT = {((u, t), |E∗|) | E∗ = {(u, t, r) ∈ Y }, r ∈ R} and EO
UR, EO

TR analogously. The
nodes remain unchanged.

2.2 Projections

As most algorithms for Social Network Analysis do not allow for three-mode data, we will use
several projections to two- and one-mode data. Several such projections have already been intro-
duced in (Lehmann and Wille, 1995). In (Stumme, 2005), a more complete approach has been
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u1
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u4
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tag A
tag B

tag C

tag D

R1 R2
R3

R4

tag E

Figure 2.2: Hypergraph representation of a folksonomy.

provided, which we here adapt slightly to the association rule mining scenario.

2.2.1 Two-Mode Projections

As we want to analyze all facets of the folksonomy, we want to allow to use any (combination) of
the three sets U , T , and R as the set of objects – on which the support is computed – at some
point in time, depending on the task on hand. Therefore, we will not fix the roles of the three sets
in advance. Instead, we consider a triadic context as symmetric structure, where all three sets are
of equal importance. For easier handling, we therefore denote the folksonomy F := (U, T,R, Y )
alternatively by F := (X1, X2, X3, Y ) in the following.

We determine the set of objects – i. e., the set on which the support will be counted – by a per-
mutation σ on the set {1, 2, 3}. The choice of a permutation indicates, together with one of the
aggregation modes ‘ G’, ‘ M’, ‘∃n’ with n ∈ N, and ‘∀’, on which formal context K := (G, M, I) the
association rules are computed.

• Kσ, G

:= (Xσ(1)×Xσ(3), Xσ(2), I) with ((xσ(1), xσ(3)), xσ(2)) ∈ I if and only if (x1, x2, x3) ∈
Y .

• Kσ, M

:= (Xσ(1), Xσ(2)×Xσ(3), I) with (xσ(1), (xσ(2), xσ(3))) ∈ I if and only if (x1, x2, x3) ∈
Y .

• Kσ,∃n := (Xσ(1), Xσ(2), I) with (xσ(1), xσ(2)) ∈ I if and only if there exist n different xσ(3) ∈
Xσ(3) with (x1, x2, x3) ∈ Y .

• Kσ,∀ := (Xσ(1), Xσ(2), I) with (xσ(1), xσ(2)) ∈ I if and only if for all xσ(3) ∈ Xσ(3) holds
(x1, x2, x3) ∈ Y . This mode is equivalent to ‘∃n’ with n = |Xσ(3)|.

These projections are complemented by the following way to ‘cut slices’ out of the folksonomy.
A slice is obtained by selecting one dimension (out of user/tag/resource), and then fixing in this
dimension one particular instance.
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• Let x := xσ(3) ∈ Xσ(3). Kσ,x := (Xσ(1), Xσ(2), I) with (xσ(1), xσ(2)) ∈ I if and only if
(x1, x2, x3) ∈ Y .

Concluding, the two-mode projection is defined by the following two selections:

• a permutation σ ∈ S3 , and

• the choice of one of the aggregation modes G, M, ∃n with n ∈ N, ∀, or x ∈ U ∪̇T ∪̇R.

2.2.2 One-Mode Projections

Many interesting features can also be derived from one-mode projections, also called co-
occurrence networks. We consider two types of projections:

COT/UR(ti, tj) := {(u, r) ∈ U ×R | (u, ti, r) ∈ Y ∧ (u, tj , r) ∈ Y } , (2.1)

The projections COU/TR and COR/UT are defined analogously.

COT/R(ti, tj) := {r ∈ R | (u, ti, r) ∈ Y ∧ (u′, tj , r) ∈ Y ∧ u, u′ ∈ Y } , (2.2)

The projections COT/U , COR/U , COR/T , COU/T and COU/R are defined analogously.

ESU (t) = {(u, ω) | ((u, t), ω) ∈ EO}

2007 c© Copyright lies with the respective authors and their institutions
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Chapter 3

Network Analysis

In this chapter, we deal with the topological analysis of the network or graph representation of
folksonomies, i.e. its structural properties. The analysis of topological properties is especially
known from the area of social network analysis (SNA). Typical examples of SNA measures are the
different centrality measures (e.g. degree and betweenness centrality), the clustering coefficient or
the characteristic path length in a graph. A good introduction into SNA and its relevant measures
is available in e.g. (Wasserman and Faust, 1995).

Because of the availability of good introductory literature we do not want to give a complete
overview of all the available SNA measures. Instead, we will concentrate on the most relevant
measures which help us to explain e.g. why folksonomies can still be efficiently browsed even if
the system grows to millions of nodes. This phenomenon is related to the small-world property of
graphs. In section 3.2 we will propose adapted characteristic path length and clustering coefficient
measures which can directly be applied on three-mode graphs. They will be used for showing that
folksonomy graphs indeed exhibit small-world properties.

Furthermore, in section 3.3 we will adapt and apply measures known from complex network theory.
They will be used for examining tag co-occurrence graphs which one gets by projecting the three-
mode folksonomy graph into a one-mode graph (cf. section 2.2.2). With the help of the cumulative
strength distribution and the average nearest neighbor strength we will discuss in how far the
structure of tag co-occurrence graphs can be simply explained by the underlying tag distribution or
whether it is also influenced by the semantics of the corresponding tags.

3.1 Datasets

In the experimental part of this chapter we will use the following two datasets.

3.1.1 del.icio.us Dataset

For our experiments, we collected data from the del.ico.us system in the following way. Initially we
used wget starting from the start page of del.ico.us to obtain nearly 6,900 users and 700 tags as a
starting set. Out of this dataset we extracted all users and resources (i. e., del.icio.us’ MD5-hashed
URLs). From July 27 to 30, 2005, we downloaded in a recursive manner user pages to get new
resources, and resource pages to get new users. Furthermore we monitored the del.icio.us start
page to gather additional users and resources. This way we collected a list of several thousand
usernames which we used for accessing the first 10,000 resources each user had tagged. From
the collected data we finally took the user files to extract resources, tags, dates, descriptions,
extended descriptions, and the corresponding username.

We obtained a folksonomy with |U | = 75, 242 users, |T | = 533, 191 tags and |R| = 3, 158, 297
resources, related by in total |Y | = 17, 362, 212 tag assignments (TAS). In addition, we gener-
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ated monthly dumps from the timestamps associated with posts, so that 14 snapshots in monthly
intervals from June 15th, 2004 through July 15th, 2005 are available.

3.1.2 BibSonomy Dataset

As with the del.icio.us dataset, we created a dump of the system, and calculated monthly snap-
shots, based on the timestamps. This resulted in 20 datasets. The most recent one, from July
31st, 2006, contains data from |U | = 428 users, |T | = 13, 108 tags, |R| = 47, 538 resources,
connected by |Y | = 161, 438 tag assignments.

3.2 Small Worlds in Three-Mode-Networks

The notion of a small world has been introduced in a seminal paper by Milgram (Milgram, 1967).
Milgram tried to verify in a practical experiment that, with a high probability, any two given persons
within the United States would be connected through a relatively short chain of mutual acquain-
tances. Recently, the term “small world” has been defined more precisely as a network having
a small characteristic path length comparable to that of a (regular or Erdős) random graph, while
at the same time exhibiting a large degree of clustering (Watts, 1999) (which a random graph
does not). These networks show some interesting properties: while nodes are typically located in
densely-knit clusters, there are still long-range connections to other parts of the network, so that
information can spread quickly. At the same time, the networks are robust against random node
failures. Since the coining of the term “small world”, many networks, including social and biological
as well as man-made, engineered ones, have been shown to exhibit small-world properties.

In this section, we will define the notions of characteristic path length and clustering coefficient
in tripartite hypergraphs such as folksonomies, and apply these to the data sets introduced in
Section 3.1 in order to demonstrate that these graphs do indeed exhibit small world properties.

3.2.1 Characteristic Path Length

The characteristic path length of a graph (Watts, 1999) describes the average length of a shortest
path between two random nodes in the graph. If the characteristic path length is small, few hops
will be necessary, on average, to get from a particular node in the graph to any other node.

As folksonomies are triadic structures of (tag, user, resource) assignments, the user interface of
such a folksonomy system will typically allow the user to jump from a given tag to (a) any resource
associated with that tag, or (b) any user who uses that tag, and conversely for users and resources.
Thus, the effort of getting from one node in the folksonomy to another can be measured by counting
the hyperedges in shortest paths between the two.

More precisely, let v1, v2 ∈ T ∪U ∪R be nodes in the folksonomy, and (t0, u0, r0), . . . , (tn, un, rn)
a minimal sequence of TAS such that (tk = tk+1) ∨ (uk = uk+1) ∨ (rk = rk+1) for 0 ≤ k < n
and v1 ∈ {t0, u0, r0}, v2 ∈ {tn, un, rn}. Then we call d(v1, v2) := n the distance of v1 and v2.

Following Watts (Watts, 1999), we define d̄v as the mean of d(v, u) over all u ∈ (T ∪U ∪R)−{v},
and call the median of the d̄v over all v ∈ T ∪ U ∪ R the characteristic path length L of the
folksonomy.

In Section 3.2.3, we will analyze the characteristic path length on our datasets.

3.2.2 Clustering Coefficients

Clustering or transitivity in a network means that two neighbors of a given node are likely to be
directly connected as well, thus indicating that the network is locally dense around each node.

2007 c© Copyright lies with the respective authors and their institutions
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To measure the amount of clustering around a given node v, Watts (Watts, 1999) has defined a
clustering coefficient γv (for normal, non-hyper-graphs). The clustering coefficient of a graph is γv

averaged over all nodes v.

Watts (Watts, 1999, p. 33) defines the clustering coefficient γv as follows (Γv = Γ(v) denotes the
neighborhood of v):

Hence γv is simply the net fraction of those possible edges that actually occur in the
real Γv. In terms of a social-network analogy, γv is the degree to which a person’s
acquaintances are acquainted with each other and so measures the cliquishness of
v’s friendship network. Equivalently, γv is the probability that two vertices in Γ(v) will
be connected.

Note that Watts combines two aspects which are not equivalent in the case of three-mode data.
The first one is: how many of the possible edges around a node do actually occur, i. e. does the
neighborhood of the given vertex approach a clique? On the other hand, the second aspect is that
of neighbors of a given node being connected themselves.

Following the two motivations of Watts, we thus define two different clustering coefficients for three-
mode data:

Cliquishness: From this point of view, the clustering coefficient of a node is high iff many of the
possible edges in its neighborhood are present.

More formally: Consider a resource r. Then the following tags Tr and users Ur are con-
nected to r: Tr = {t ∈ T | ∃u : (t, u, r) ∈ Y }, Ur = {u ∈ U | ∃t : (t, u, r) ∈ Y }.
Furthermore, let tur := {(t, u) ∈ T × U | (t, u, r) ∈ Y } the (tag, user) pairs occurring with
r.

If the neighborhood of r was maximally cliquish, all of the pairs from Tr ×Ur would occur in
tur. So we define the clustering coefficient γcl(r) as:

γcl(r) =
|tur|

|Tr| · |Ur|
(3.1)

i.e. the fraction of possible pairs present in the neighborhood. A high γcl(r) would indicate,
for example, that many of the users related to a resource r assign overlapping sets of tags
to it.

The same definition of γcl stated here for resources can be made symmetrically for tags and
users.

Connectedness (Transitivity): The other point of view follows the notion that the clustering
around a node is high iff many nodes in the neighborhood of the node were connected
even if that node was not present.

In the case of folksonomies: consider a resource r. Let t̃ur := {(t, u) ∈ T × U | (t, u, r) ∈
Y ∧∃r̃ 6= r : (t, u, r̃) ∈ Y } be the pairs of (tag, user) from that set that also occur with some
other resource than r. Then we define:

γco(r) :=
|t̃ur|
|tur|

(3.2)

i.e. the fraction of r’s neighbor pairs that would remain connected if r were deleted. γco

indicates to what extent the surroundings of the resource r contain “singleton” combinations
(user, tag) that only occur once.

Again, the definition works the same for tags and users, and the clustering coefficients for
the whole folksonomy are defined as the arithmetic mean over the nodes.
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Figure 3.1: Characteristic path length for the bibsonomy folksonomy (left) and the
del.icio.us folksonomy (right), compared with the corresponding random graphs: permuted
and binomial (see text). The measure is repeated following the network growth and shown as a
function of the number of tagging events. Similar graph have been obtained as a function of the
number of nodes of the networks (not shown). Note how the characteristic path length takes quite
similar low values, typical of small world networks, for all graphs.

It was shown in (Schmitz et al., 2007) that the clustering coefficients γcl and γco do indeed capture
different characteristics of the graph and are not intrinsically related.

3.2.3 Experiments

Setup

In order to check whether our observed folksonomy graphs exhibit small world characteristics, we
compared the characteristic path lengths and clustering coefficients with random graphs of a size
equal in all dimensions T , U , and R as well as Y to the respective folksonomy under consideration.

Two kinds of random graphs are used for comparison:

Binomial: These graphs are generated similar to an Erdős random graph G(n, M) (Bollobas,
2001). T,U,R are taken from the observed folksonomies. |Y | many hyperedges are then
created by picking the three endpoints of each edge from uniform distributions over T , U ,
and R, resp.

Permuted: These graphs are created by using T,U,R from the observed folksonomy. The tag-
ging relation Y is created by taking the TAS from the original graph and permuting each
dimension of Y independently (using a Knuth Shuffle (Knuth, 1981)), thus creating a ran-
dom graph with the same degree sequence as the observed folksonomy.

As computing the characteristic path length is prohibitively expensive for graphs of the size en-
countered here, we sampled 200 nodes randomly from each graph and computed the path lengths
from each of those nodes to all others in the folksonomy using breadth-first search.

For all experiments involving randomness (i. e. those on the random graphs as well as the sampling
for characteristic path lengths), 20 runs were performed to ensure consistency. The presented
values are the arithmetic means over the runs; the deviations across the runs were negligible in all
experiments.
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Figure 3.2: Cliquishness of the BibSonomy folksonomy (left) and the del.icio.us folkson-
omy (right), compared with the corresponding random graphs: permuted and binomial (see text).
The measure is repeated following the network growth and shown as a function of the number
of tagging events. Similar graphs have been obtained as a function of the number of nodes of
the networks (not shown). The cliquishness for the folksonomy networks takes quite high values,
higher than the corresponding random graph (permuted and binomial).
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Figure 3.3: Connectedness/Transitivity of the BibSonomy folksonomy (left) and the
del.icio.us folksonomy (right), compared with the corresponding random graphs: permuted
and binomial (see text). The measure is repeated following the network growth and shown as a
function of the number of tagging events. Similar graphs have been obtained as a function of the
number of nodes of the networks (not shown). As in the case of cliquishness, the values of con-
nectedness/transitivity are very high for the folksonomy networks, at odds with the corresponding
random graphs (permuted and binomial).
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Observations

Figures 3.1– 3.3 show the results for the clustering coefficients and the characteristic path lengths
for both datasets, plotted against the number |Y | of tag assignments for the respective monthly
snapshots.

Both folksonomy datasets under consideration exhibit the small world characteristics as defined
at the beginning of this section. Their clustering coefficients are extremely high, while the charac-
teristic path lengths are comparable to (BibSonomy) or even considerably lower (del.icio.us) than
those of the binomial random graphs.

Del.icio.us In the del.icio.us dataset (Figures 3.2 and 3.3, right hand sides), it can be seen
that both clustering coefficients are extremely high at about 0.86, much higher than those for the
permuted and binomial random graphs. This could be an indication of coherence in the tagging
behavior: if, for example, a given set of tags is attached to a certain kind of resources, users do so
consistently.

On the other hand, the characteristic path lengths (Figure 3.1, right) are considerably smaller than
for the random binomial graphs, though not as small as for the permuted setting. Interestingly,
the path length has remained almost constant at about 3.5 while the number of nodes has grown
about twenty-fold in the observation period.

As explained in Section 3.2.1, in practice this means that on average, every user, tag, or resource
within del.ici.us can be reached within 3.5 mouse clicks from any given del.icio.us page. This might
help to explain why the concept of serendipitous discovery (Mathes, 2004a) of contents plays such
a large role in the folksonomy community – even if the folksonomy grows to millions of nodes,
everything in it is still reachable within few hyperlinks.

BibSonomy As the BibSonomy system is rather young, it contains roughly two orders of magni-
tude fewer tags, users, resources, and TAS than the del.icio.us dataset.

On the other hand, the values show the same tendencies as in the del.icio.us experiments.

Figures 3.2 and 3.3 (left) show that clustering is extremely high at γcl ≈ 0.96 and γco ≈ 0.93 –
even more so than in the del.icio.us data.

At the same time, Figure 3.1 shows that the characteristic path lengths are somewhat larger, but
at least comparable to those of the binomial graph.

There is considerably more fluctuation in the values measured for BibSonomy due to the fact that
the system started only briefly before our observation period. Thus, in that smaller folksonomy,
small changes, such as the appearance of a new user with a somewhat different behavior, had
more impact on the values measured in our experiments.

Furthermore, many BibSonomy users are early adopters of the system, many of which know each
other personally, work in the same field of interest, and have previous experience with folksonomy
systems. This might also account for the very high amount of clustering.

3.3 Networks of Tag Co-Occurrence

In order to investigate the emergent semantic properties of the folksonomy, we focus on the re-
lations of co-occurrence among tags. Since the process of tagging is inclusive (Golder and Hu-
berman, 2005), and large overlap often exists among resources marked with different tags, the
relations of co-occurrence among tags expose the semantic aspects underling collaborative tag-
ging, such as homonymy, synonymy, hierarchical relations among tags and so on.

The simplest way to study tag co-occurrence at the global level is to define a network of tags,
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where two tags t1 and t2 are linked if there exists a post where they have been associated by a
user with the same resource. A link weight can be introduced by defining the weight of the link
between t1 and t2, t2 6= t1, as the number of posts where they appear together. Formally, the set
of posts COT/UR where two tags t1 and t2 co-occur can be defined as follows (cf. 2.2.2)

COT/UR(t1, t2) := {(u, r) ∈ U ×R | (t1, u, r) ∈ Y ∧ (t2, u, r) ∈ Y } , (3.3)

The link weight is then defined as w(t1, t2) := |COT/UR(t1, t2)|. The above link strength defines
on T × T a symmetric similarity matrix which is analogous to the usual adjacency matrix in graph
theory. The strength st of a node t is defined as

st :=
∑
t′ 6=t

w(t, t′) . (3.4)

3.3.1 Cumulative Strength Distribution

A first statistical characterization of the network of tags is afforded by the cumulative strength
distribution P>(s), defined as the probability of observing a strength in excess of s. These distri-
butions are displayed for del.icio.us and BibSonomy in Figs. 3.4 and 3.5, respectively. This is a
standard measure in complex network theory and plays the same role of the degree distribution in
unweighted networks. We observe that P>(s) is a fat-tailed distribution for both folksonomies: this
is related to a lack of characteristic scale for node strengths and is one of the typical fingerprints
of an underlying complex dynamics of interacting human agents (Vazquez et al., 2006; Vazquez,
2005). A coarse indicator such as P>(s), despite its simplicity, is able to point out anomalous ac-
tivity (i.e. spam) within the investigated folksonomies, as discussed in the captions of Figs. 3.4 and
3.5. Quite interestingly, on filtering out these undesired (and probably automatically generated)
contributions, the probability distributions for del.icio.us and BibSonomy become rather similar,
even though the two systems under study are dramatically different in terms of user base, size and
age.

Uncovering the detailed “microscopic” mechanism responsible for the observed distribution is a
daunting task. A simple way to identify the contribution of semantics – and in general of human
activity – to those distributions consists in destroying semantics altogether by randomly shuffling
tags among TAS entries. In the tripartite graph view of the folksonomy, this corresponds to intro-
ducing a random permutation of the set of tags T , biunivocally mapping each tag t ∈ T into a
corresponding tag t′. Correspondingly, each hyperedge t, u, r is mapped into a new hyperedge
t′, u, r. Each post in the original folksonomy corresponds to a new post with the same number of
tags, but now the co-occurrence relations are completely different.

In Figs. 3.4 and 3.5 we show that by performing this shuffling operation (blue dots) the distribution
is only marginally affected. Far from being obvious, this shows that the global frequencies of tags
– and not their co-occurrence relations – are the main factors shaping the distribution P>(s). In
other words, the fat-tailed nature of P>(s) is induced by the distribution of tag frequencies, which
has been known to be fat-tailed (Cattuto et al., 2007; Golder and Huberman, 2005), in analogy to
Zipf’s law (also observed in human languages).

3.3.2 Average Nearest Neighbor Strength

In order to probe deeper into the structure of the co-occurrence network and recognize the con-
tribution of semantics, we need to compute observables more sensitive to correlations and to the
local structure of the network. To this end, a useful quantity studied in complex networks is the
nearest neighbor connectivity. As defined above, the sum of all weights si =

∑
j wij of links con-

nected to a given node i is called strength of node i. Now, given a node i with strength si, we
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Figure 3.4: Cumulative strength distribution for the network of co-occurrence of tags in del.icio.us.
P>(s) is the probability of having a node with strength in excess of s. Red dots correspond to
the whole co-occurrence network. The two steps indicated by arrows correspond to an excess of
link with a specific weight and can be related to spamming activity. Excluding from the analysis
all posts with more than 50 tags removes the steps (green dots). Shuffling the tags contained in
posts (blue dots) does not affect significantly the cumulated weight distribution. This proves that
such a distribution is uniquely determined by tag frequencies within the folksonomy, and not by the
semantics of co-occurrence.
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Figure 3.5: Cumulative strength distribution P>(s) for the network of co-occurrence of tags in
BibSonomy (see also Fig. 3.4). Red dots correspond to the whole co-occurrence network. The
irregular behavior for high strengths can be linked to spamming activity: identified spam in BibSon-
omy consists of posts with a large number of tags, as well as a large number of posts with exactly
10 tags, injected by a small group of spammers. Both types of spam were identified by inspecting
the distribution of the number of tags per post. Excluding the above posts from the analysis (green
dots), the distribution becomes smooth and similar to the filtered one observed for del.icio.us. Sim-
ilarly, shuffling the tags contained in posts (blue dots) has a small effect on the cumulated weight
distribution.
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define its average nearest-neighbor strength as:

Snn(si) =
1
ki

ki∑
j=1

sj , (3.5)

with ki corresponding to the number of links with non vanishing weight connected to node i. The
concept of nearest neighbor needs to be clarified here. In principle all nodes are connected each
other in a weighted graph, but in this particular context we ignore the existence of those links that
have vanishing weight. Consequently, we consider two nodes as nearest neighbors, if exists a link
between them with non vanishing weight.

The average nearest neighbor strength Snn(s), as a function of the node strength s, provides
information on correlations among the strength of nodes and therefore is also known in litera-
ture as node nearest-neighbor strength correlation Snn(s) (Barrat et al., 2004). When referred to
unweighted networks, i.e. where all existing links have unit strength, Snn is able to discriminate
between technological networks, where Snn(s) is a decreasing function of the strength s, and
social networks, where, on the contrary, Snn(s) displays an increasing behavior. These two net-
works with opposite behaviors are commonly referred to as disassortative and assortative mixing
networks, respectively (Capocci and Colaiori, 2005; Newman, 2002).

Figs. 3.6 and 3.7 display our results for del.icio.us and BibSonomy, respectively. In the figures,
each dot correspond to a node of the network (i.e. a tag), with its strength s as the abscissa and
the average strength of its neighbors Snn as the ordinate. Both quantities span several orders
of magnitude, hence we use a logarithmic scale along both axes to display the global features
of the scatter plot. This is related to the fat-tailed behavior observed for the strength distribution
P>(s), which is in fact recovered by projecting the data points along the s-axis and computing the
cumulative distribution.

In the scatter plots, the anomalous activity such as spam is more clearly detectable, and its con-
tribution appears in the form of foreign clusters (indicated by arrows) that clearly stand out from
the otherwise smooth cloud of data points, a fact that reflects the anomalous nature of their con-
nections with the rest of the network. Excluding spam from the analysis, those clusters disappear
altogether (green dots). The general shape of the cloud of data points remains unchanged, even
though, in the case of BibSonomy, it shifts down towards lower strengths. This happens because
BibSonomy is a smaller system and spam removal has a more significant global impact on the
network and the strengths of its nodes.

Overall, the plots for del.icio.us and BibSonomy look quite similar, and this suggests that the fea-
tures we report here are generally representative of collaborative tagging systems. An assortative
region (Snn roughly increasing with s) is observed for low values of the strength s, while disassor-
tative behavior (Snn decreasing with s) is visible for high values of s. As we have already done for
the probability distribution P>(s), we can highlight the contribution of semantics by randomly shuf-
fling tags in TAS entries (blue dots in Fig. 3.6 and 3.7). In this case, shuffling the tags (blue points)
affects dramatically the distribution of data points: this happens because the average nearest-
neighbor strength of nodes is able to probe the local structure of the network of co-occurrence
beyond the pure frequency effects, and is sensitive to patterns of co-occurrence induced by se-
mantics. Interestingly, the main effect seems to be the disappearance of points in the assortative
(low strength) region of the plot, possibly identifying this region as the one exposing semantically
relevant connections between tags. Notice, for example, the disappearance of a whole cloud of
points at the top-left of Fig. 3.7: those points represent nodes (tags) with low strength that are
attached preferentially to nodes of high strength. Similarly, in Fig. 3.6, the highly populated re-
gion with s roughly ranging between 10 and a few thousands also disappears when tag shuffling
is applied. Those data points also represent low-strength nodes (tags) preferentially connected
with higher-strength nodes (tags). Such properties are commonly found in hierarchically organized
networks, and could be related to an underlying hierarchical organization of tags (Heymann and
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Figure 3.6: Average nearest-neighbor strength Snn of nodes (tags) as a function of the node (tag)
strength s, in del.icio.us. Red dots correspond to the whole co-occurrence network. Assortative
behavior is observed for low values of the strength s, while disassortative behavior is visible for
high values of s. A few clusters (indicated by arrows) stand out from the main cloud of data
points. As in Fig. 3.4, such anomalies correspond to spamming activity and can be removed by
filtering out posts containing an excessive number of tags (green dots). In this case, shuffling the
tags (blue points) affects dramatically the distribution of data points: this happens because the
average nearest-neighbor strength of nodes is able to probe the local structure of the network of
co-occurrence beyond the pure frequency effects, and is sensitive to patterns of co-occurrence
induced by semantics.

Garcia-Molina, 2006).

3.4 Cooperative structuring of folksonomy semantic space

In this section we focus on a different aspect of a folksonomy, namely the cooperative aspects of
the incoherent user activity. We define in particular a semantic space as composed by a given set
of resources and check whether the selfish tagging activity is able to structure such a space in a
semantically meaningful way. Here meaningful structure means a partition of the semantic space
made up of groups of resources for which the associated tag cloud points to a well defined area
or topic. These groups of resources could also identify in principle groups or communities of users
sharing the same interests.

In order to perform this analysis we have considered a dataset composed by two different sets,
each composed by 200 resources (this number can be easily increased). The two sets are chosen
in such a way that the first one only includes resources for which all posts include the tag design
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Figure 3.7: Average nearest-neighbor strength Snn of nodes (tags) as a function of the node (tag)
strength s, in BibSonomy. Red dots correspond to the whole co-occurrence network. The scatter
plot is qualitatively very similar to the one reported in Fig. 3.6 for del.icio.us: assortative behavior is
observed for low values of the strength s, while disassortative behavior is visible for high values of
s. Again, a few clusters (indicated by arrows) stand out from the main cloud of data points and their
presence can be linked to spamming activity. They disappear when we filter out posts containing
an excessive number of tags (green dots). Shuffling the tags (blue dots) has the same effect as in
Fig. 3.6, and the same observations apply.
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while the second one only includes resources for which all posts include the tag politics. The
idea was to artificially construct a dataset with at least two well separated semantic regions. For
each resource in the dataset the whole stream of posts is available, i.e. for each resources we
have the whole temporal stream of users-tags associations [U, {tags}].
The next step has been that of constructing a similarity matrix among resources. To this end we
define the level of similarity between two generic resources R1 and R2 using a TF/IDF weighting
procedure (Salton and McGill, 1983). The TF/IDF weight (Term Frequency Inverse Document
Frequency) is a often used in information retrieval and text mining where it represents a statistical
measure used to evaluate how important a word is to a document in a collection or corpus. The
importance increases proportionally to the number of times a word appears in the document but is
offset by the frequency of the word in the corpus. In our implementation the tags are playing the
role of words. Given two resources, one defines with T1 and T2 the set of tags associated with R1

and R2, respectively, the Union set as U := T1 ∪ T2, and the Intersection set as K := T1 ∩ T2.

advertising  agency  art  arte  artist  artists  blog  branding  cool  creative  creativity  css  

design  designer  designers  digital  drawing  fashion  flash  gallery  graphic  graphics  
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Figure 3.8: Sets of tags considered in evaluating the strength w of Eq. 3.6: T1 (blue) and T2

(yellow) are the set of tags associated with resources 1 and 2, respectively. K := T1 ∩ T2 is the
set of tags shared by the two resources.

Further we denote with f1
t , f2

t the frequencies of occurrence of the tag t in T1 and T2, respectively,
while ft will denote the frequency of the tag t in the whole corpus of tags associated to all the
resources. With these definitions, the strength of the link between R1 and R2 is given by:

wR1,R2 =

∑
t∈T1∩T2

min(f1
t .f2

t )
ft∑

t∈T1∩T2

max(f1
t .f2

t )
ft

+
∑

t∈T1−K
f1

t
ft

+
∑

t∈T2−K
f2

t
ft

. (3.6)

Fig. 3.9 reports the histograms of the strengths among all the resource pairs for three different
corpora of resources: the subset of resources sharing the tag design, the subset of resources
sharing the tag politics and the whole of resources. Notice that the global frequency ft of a
given tag t depends on the corpus chosen for the analysis. From the figure it is evident that the
logarithm scale is the best suited to visualize the full range of strength variability.

In order to investigate the existence of underlying structures in the space of the resources we
proceed as follows. First of all we transform the matrix in order to optimize the dynamical range
of strength variability. Since the logarithmic scale gives a good representation of the strength
variability we considered a matrix where each element is raised to a very small power (in order to
avoid the pathologies of the logarithm in the neighborhood of zero). The matrix w′ we will use from
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Figure 3.9: Probability distributions of link strengths. The logarithmically-binned histogram of the
link strengths for all pairs of resources within a given set is displayed for three sets of resources:
empty squares correspond to resources tagged with design, filled squares correspond to resources
tagged with politics, and blue circles correspond to the union of the above sets. It is important to
observe that the variability range of strengths spans several orders of magnitude, so that a non-
linear function of link strengths becomes necessary in order to capture the full dynamic range of
strength values.

now onwards has then components:

w′
R1,R2

= (wR1,R2)
0.1 ∀ pairsR1, R2 ∈ U. (3.7)

Figure 3.10 reports the full matrix of strengths between pairs of resources w′R1,R2 for the full
set of 400 resources. The resources are randomly ordered and no structures are evident in this
representation.

The problem we have to tackle now is that of finding the sequence of row and column permutations
of the matrix of strengths, that permits to visually spot the presence of semantic communities of
resources. The goal will be to obtain a matrix with a clear visible block structure on its main
diagonal. One possible way to approach this problem is to construct an auxiliary matrix and use
information deduced from its spectral properties to rearrange row and columns of the original
matrix. The quantity we consider is the matrix

Q = S −W (3.8)

where W = w′ except for the main diagonal where W presents all zeros and S is the diagonal
matrix with each element on the main diagonal equal to the sum of the corresponding row of W ,
i.e. Sij = δij

∑
j Wij .

2007 c© Copyright lies with the respective authors and their institutions



Page 32 of 67 TAGora: Semiotic Dynamics in Online Social Communities

 0

 0.2

 0.4

 0.6

 0.8

 1

R1

R2

 0  50  100  150  200  250  300  350  400

R1

 0

 50

 100

 150

 200

 250

 300

 350

 400

R2

Figure 3.10: Matrix w′ of link strengths (see Eq.3.7) for the global set of 400 randomly ordered
resources. Except for the bright diagonal, whose elements are identically equal to 1 because of
the normalization property of the strength w, the matrix appears featureless.

The matrix Q is non negative and resembles the Laplacian matrix of graph theory. As shown
in (Capocci et al., 2005; Newman, 2006), studying its spectral properties can reveal the community
structure present in complex networks.

The main idea is to consider the lowest eigenvalues. Firstly, for the very construction, there is a zero
eigenvalue corresponding to an eigenvector with constant component values, i.e. a trivial constant
eigenvector. Now consider the simplest case, where the matrix Q could be written with exactly
two non zero blocks on its main diagonal (i.e. with two clearly separated semantic communities).
In this case two eigenvectors with zero eigenvalues are present. Each one of these eigenvectors
signals the presence of a community. In fact their components would be zero for the coordinates
corresponding to a community (i.e. a diagonal block) and different from zero, but constant, for the
other community.

The possible presence of small terms mixing the two blocks would remove the degeneracy of the
null eigenvector. Still, the coordinates of the eigenvectors with the smallest eigenvalues will reveal
the community structures, even if some trivial eigenvectors, similar to the constant one, may still
be present.

Given the set of these non trivial eigenvectors, a very simple way to identify the communities
consists in plotting on a multidimensional plot their coordinates. Each axis reports the values of the
components of the eigenvectors. In particular each point has coordinates equal to the homologous
components for the eigenvectors considered. In this kind of plots communities will emerge as well
defined cluster of points. The components involved in each clusters identify the elements belonging
to a given community.

Once identified the communities, it is interesting to permute the indexes of the original matrix W
such that the components of the same community get close. The corresponding matrix should
appear roughly made by diagonal blocks, even if some mixing terms would signals an overlap
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between communities (blocks).

Figure 3.11 reports the set of all the eigenvalues of Q sorted by their numerical value. As expected,
we observe the existence of a null eigenvalue, corresponding to the trivial constant eigenvector.
Next largest eigenvalue is actually very small and corresponds to a trivial eigenvector too, since its
components are almost constant. Higher eigenvalues corresponds to non-trivial eigenvectors.
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Figure 3.11: Eigenvalues of the matrix Q. Resource communities correspond to non-trivial eigen-
values of the spectrum, such as the ones visible on the leftmost side of the plot, and in the inset.
The three eigenvalues marked in the inset correspond to the eigenvectors plotted in Fig. 3.12.

Figure 3.12 reports a 3-dimensional scatter plot illustrating the structure of the three eigenvectors
corresponding to the first three non-trivial eigenvalues (i.e. third, fourth and fifth, see Fig.3.11).
Each axis report the values of the components of the eigenvectors corresponding to the third,
fourth and fifth eigenvalues. In particular each point has coordinates equal to the homologous
components for the three non-trivial eigenvectors considered. It is evident the existence of at least
5 well defined communities corresponding also to the five well separated non-zero eigenvalues
(see fig. 3.11). It is actually barely visible a sixth community corresponding to the sixth non-trivial
eigenvalue.

Once we have diagonalized the matrix Q the permutation of indexes necessary to sort the com-
ponent values of these eigenvectors determine the desired ordering of rows and columns in the
original matrix W . By performing this reordering it is possible to visualize the matrix of strengths
of Fig. 3.10 in a way to make it maximally diagonal. Fig. 3.13 reports the reordered matrix.

An interesting question is now whether the communities we have found through the diagonalization
of the matrix Q correspond to semantically separated area in the space of resources. In order to
check this point we associate to each community its corresponding tag cloud and we plot it by
considering only the 30 most frequent tags. Fig. 3.14 reports the six tag clouds (ordered for
decreasing number of resources) where the font of each tag is proportional to the logarithm of the
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Figure 3.12: Eigenvectors of the matrix Q. The scatter plot displays the component values of
the first three non-trivial eigenvectors of the matrix (V3, V4, V5, also marked in Fig. 3.11). The
scatter plot is parametric in the component index. Five or six clusters are apparent, corresponding
to the non-trivial eigenvalues of the matrix. Each cluster, marked with a numeric label, defines a
community of “similar” resources (in terms of tags). Blue and red points correspond to resources
tagged with design and politics, respectively. It is important to note that our approach clearly
separates the two communities, as well as highlighting few more finer-grained structures. Tag
clouds for the identified communities are shown in Fig. 3.14.

tag frequency.

Despite the intrinsic difficulty of identifying the semantic area defined by a given tag cloud, it is
possible to associate, at least to the four main largest communities, well defined areas. In particular
the first community could be associated to humor in politics, the second one to visual design, the
third one to news in politics and the fourth one to web design. It is evident how the a-priori selfish
activity of the users is give raise to an effective cooperative behaviors able to structure the semantic
space of the resources with semantically meaningful set of tags.



D3.1 Extracting Emergent Metadata Statistics
and Network Metrics in Social Tagging Systems Page 35 of 67

 0

 0.2

 0.4

 0.6

 0.8

 1

R1

R2

 0  50  100  150  200  250  300  350  400

R1

 0

 50

 100

 150

 200

 250

 300

 350

 400

R2

Figure 3.13: Matrix w′ of link strengths (see Eq.3.7) for our set of 400 resources. Here the resource
indices are ordered by community membership (the sequence of communities along the axes is
2, 4, 6, 5, 3, 1, see Fig. 3.14). In striking contrast with Fig.3.10, the permutation of indices we
employed clearly exposes the community structure of our set of resources: two main regions of
high-similarity, corresponding to blue/red rectangles at the top-right and bottom-left of the matrix
correspond, respectively, to resources tagged with design and politics. On top of this, our approach
also reveals the presence of finer-grained community structures within the above communities (red
rectangular regions towards the center of the matrix). On direct inspection, such communities of
resources turn out to have a rather well defined semantic characterization in terms of tags, as
shown by the tag clouds in Fig.3.14.
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Figure 3.14: Tag clouds for the 6 resource communities identified by our analysis(see Fig. 3.12),
ordered by decreasing community size. Each tag cloud shows the 30 topmost frequent tags asso-
ciated with resources belonging to a given community. Within tag clouds, as usual, the size of text
labels increases with the logarithm of the frequency of the corresponding tag. The first two com-
munities (the largest ones) correspond to the main division between resources tagged with politics
and design, respectively. Notice how each tag clouds is strongly characterized by only one of the
above two tags. In addition to discriminating the above two main communities, our approach also
identifies additional and unexpected communities. On inspecting the corresponding tag clouds,
one can recognize a rather well-defined semantic connotation pertaining to each community, as
discussed in the main text.
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Chapter 4

Trend Detection in Folksonomies

In this chapter, we will analyze this emergence of common semantics by exploring trends in the
folksonomy. Since the structure of a folksonomy is symmetric with respect to the dimensions ‘user’,
‘tag’, and ‘resource’, we can apply the same approach to study upcoming users, upcoming tags,
and upcoming resources. We present a technique for analyzing the evolution of topic-specific
trends. Our approach is based on our FolkRank algorithm (Hotho et al., 2006a), a differential
adaptation of the PageRank algorithm (Brin and Page, 1998) to the tri-partite hypergraph structure
of a folksonomy. Compared to pure co-occurrence counting, FolkRank takes also into account
elements that are related to the focus of interest with respect to the underlying graph/folksonomy.
In particular, FolkRank ranks synonyms higher, which usually do not occur in the same bookmark
posting together.

With FolkRank, we compute topic-specific rankings on users, tags, and resources. In a second
step, we can then compare these rankings for snapshots of the system at different points in time.
We can discover both the absolute rankings (who is in the Top Ten?) and winners and losers (who
rose/fell most?).

The contributions of this work are:

Ranking in folksonomies. We describe a general ranking scheme for folksonomy data. The
scheme allows in particular for topic-specific ranking.

Trend detection. We introduce a trend detection measure which allows to determine which tags,
users, or resources have been gaining or losing in popularity in a given time interval. Again,
this measure allows to focus on specific topics.

Application to arbitrary folksonomy data. As the ranking is solely based on the graph structure
of the folksonomy – which is resource-independent – we can also apply it to any kind of
resources, including in particular multimedia objects, but also office documents which typi-
cally do not have a hyperlink structure per se. It can even be applied to an arbitrary mixture
of these content types. Actually, the content of the tagged resources will not have to be
accessible in order to manage them in a folksonomy system.

Evaluation. We have applied our method to a large-scale dataset from an actual folksonomy
system.

The chapter is organized as follows. In the next section, we describe our ranking and trend detec-
tion approach. In Section 4.2, we apply the approach to a large-scale dataset, a one-year snapshot
of the del.icio.us system and Section 4.3 discusses related work.
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4.1 Trend Detection in Folksonomies

For discovering trends in a social resource sharing system, we will need snapshots of its folk-
sonomy at different points of time. For each snapshot, we will need a ranking, such that we can
compare the rankings of consecutive snapshots. As we also want to discover topic-specific trends,
we will additionally need a ranking method that allows to focus on the specific topic. We will make
use of our search and ranking algorithm FolkRank (Hotho et al., 2006a) which we summarize
below.

4.1.1 Ranking

In this section we recall the principles of the FolkRank algorithm that we developed for supporting
Google-like search in folksonomy-based systems. It is inspired by the seminal PageRank algo-
rithm (Brin and Page, 1998).

Because of the different nature of folksonomies compared to the web graph (undirected triadic hy-
peredges instead of directed binary edges), PageRank cannot be applied directly on folksonomies.
In order to employ a weight-spreading ranking scheme on folksonomies, we will overcome this
problem in two steps. First, we transform the hypergraph into an undirected graph. Then we ap-
ply a differential ranking approach that deals with the skewed structure of the network and the
undirectedness of folksonomies.

Folksonomy-Adapted Pagerank.

First we convert the folksonomy F = (U, T, R, Y ) into an undirected tri-partite graph GF = (V,E)
as follows.

1. The set V of nodes of the graph consists of the disjoint union of the sets of tags, users and
resources: V := U ∪̇T ∪̇R. (The tripartite structure of the graph can be exploited later for
an efficient storage of the adjacency matrix and the implementation of the weight-spreading
iteration in the FolkRank algorithm.)

2. All co-occurrences of tags and users, users and resources, tags and resources become
edges between the respective nodes: E := {{u, t} | ∃r ∈ R : (u, t, r) ∈ Y } ∪ {{t, r} |
∃u ∈ U : (u, t, r) ∈ Y } ∪ {{u, r} | ∃t ∈ T : (u, t, r) ∈ Y } .

The original formulation of PageRank (Brin and Page, 1998) reflects the idea that a page is impor-
tant if there many pages linking to it, and if those pages are important themselves. The distribution
of weights can thus be described as the fixed point of a weight passing scheme on the web graph.
This idea was extended in a similar fashion to bipartite subgraphs of the web in HITS (Kleinberg,
1999) and to n-ary directed graphs in (Xi et al., 2004). We employ the same underlying principle
for our ranking scheme in folksonomies. The basic notion is that a resource which is tagged with
important tags by important users becomes important itself. The same holds, symmetrically, for
tags and users, thus we have a graph of vertices which are mutually reinforcing each other by
spreading their weights.

Like PageRank, we employ the random surfer model, a notion of importance for web pages that is
based on the idea that an idealized random web surfer normally follows hyperlinks, but from time
to time jumps to a new webpage without following a link. This results in the following definition.
The rank of the vertices of the graph are the entries in the fixed point ~w of the weight spreading
computation

~w ← dA~w + (1− d)~p , (4.1)
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where ~w is a weight vector with one entry for each web page, A is a row-stochastic version of the
adjacency matrix of the graph GF defined above, ~p is the random surfer component that outweighs
the loss of weight in dangling links, and d ∈ [0, 1] is determining the influence of ~p. Usually, one will
choose ~p = 1, i. e., the vector composed by 1’s, to achieve uniform damping. In order to compute
personalized PageRanks, however, ~p can be used to express user preferences by giving a higher
weight to the components which represent the user’s preferred web pages. If ||~w||1 = ||~p||1,1 the
weight in the system will remain constant.

As the graph GF is undirected, most of the weight that went through an edge at moment t will flow
back at t+1. The results are thus rather similar (but not identical, due to the damping) to a ranking
that is simply based on edge degrees. The reason for applying the more expensive PageRank
approach nonetheless is that its random surfer vector allows for topic-specific ranking.

FolkRank — Topic-Specific Ranking.

As the graph GF that we created in the previous step is undirected, we face the problem that an
application of the original PageRank would result in weights that flow in one direction of an edge
and then ‘swash back’ along the same edge in the next iteration, so that one would basically rank
the nodes in the folksonomy by their degree distribution. This makes it very difficult for other nodes
than those with high edge degree to become highly ranked, no matter what the preference vector
is.

This problem is solved by the differential approach in FolkRank, which computes a personalized
ranking of the elements in a folksonomy as follows:

1. The preference vector ~p is used to determine the topic. It may have any distribution of
weights, as long as ||~w||1 = ||~p||1 holds. Typically a single entry or a small set of entries is
set to a higher value, and the remaining weight is equally distributed over the other entries.
Since the structure of folksonomies is symmetric, we can define a topic by giving a higher
value to either one or more tags and/or one or more users and/or one or more resources.

2. Let ~w0 be the fixed point from Equation (4.1) with d = 1.

3. Let ~w1 be the fixed point from Equation (4.1) with d < 1. In our experiments, we set d = 0.85.

4. ~w := ~w1 − ~w0 is the final weight vector.

Thus, we compute the winners and losers of the mutual reinforcement of nodes when a user pref-
erence is given, compared to the baseline without a preference vector. We call the resulting weight
~w[x] of an element x of the folksonomy the FolkRank of x. In (Hotho et al., 2006a) we showed
that ~w provides indeed valuable results on a large-scale real-world dataset while ~w1 provides an
unstructured mix of topic-relevant elements with elements having high edge degree.

4.1.2 Trend Detection

In order to analyze the trends around a specific topic, we first have to describe the topic by defining
the preference vector ~p. Then we compute, for each point in time t ∈ {0, . . . , n}, the rank vector
~wt within the folksonomy Ft which consists of all tag assignments performed before t.2

We select then from the resulting rank vectors those entries which are assigned to one of the three
dimensions ‘tags’, ‘users’, and ‘resources’ — depending on where we want to see rising and falling
elements. Else an analysis would be difficult, since users have higher weights than tags, which in
their turn have higher weights than resources, due to the different sizes of the sets U , T , and R.

1. . . and if there are no rank sinks – but this holds trivially in our graph GF.
2If no entries were deleted, Ft+1 contains thus Ft, for all t.
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As the total weight in the system will differ at different points of time because of new tags, users,
and resources, we normalize at last each rank vector such that its largest value equals 1. This
allows to compare rankings from different points in time. If the preference vector has only one
distinguished element, then this element is the one with the highest value in the resulting weight
vector. The closer another entry is to this value, the more important is its associated element to
the topic. By plotting the values of the Top 10 or Top 20 over time, one can thus discover the rise
and fall of the most popular elements. Figure 4.1 shows such a plot for the del.icio.us users which
are most important for the topic ‘music’, while Figure 4.2 shows the tags which are most important
for the topic ‘politics’. How these diagrams are to be read, and what the most important findings
are, will be described in detail in the next section.

Going a step further, we may not only be interested in the most important elements, but also in
those where the increase or decrease of rank is the steepest. To this end, we have developed the
following popularity change measure, which allows for detecting topic-specific trends.

Assume x is a tag, user or resource of the folksonomy F, i.e. x ∈ U ∪ T ∪R. (In the following, we
assume it is a resource; the same methods apply symmetrically for tags and users.) Similar to the
relative change used for word occurrences in (Kleinberg, 2006), we define the popularity change
pct0→t1(x) of x from t0 to t1 as follows.

At times t0 < t1, let the resource x be ranked at position r0 and r1, respectively, in the descend-
ing weight order of the FolkRank computation. Let n0 and n1 be the sizes |R| of the resource
dimension at times t0, t1. The popularity change is defined as

pct0→t1(x) :=
(

r0

n0
− r1

n1

)
log10

(
n1

r1

)
(4.2)

(where elements not present at time ti are treated as being positioned at ri = ni + 1). Here, the
fractions in the first term indicate the relative positions of x at the given times, 1/ni being the best
(i.e. having maximum FolkRank) and 1 being the worst. The second term discounts the change
with respect to the relative position where the change took place: to get from a top 90 % position
to a top 80 % one would be considered three times easier than to get from the top 0.09 % to the
top 0.08 %.

Combined with a topic-directed FolkRank computation, we use this measure of a change in popu-
larity to get an insight into what are the trends in a certain community in the folksonomy. We point
out the winning and losing elements of the folksonomy in a given time interval.

4.2 Experiments

4.2.1 Evaluation of Popularity Change in del.icio.us

In order to evaluate our approach, we have analyzed the popular social bookmarking system
del.icio.us.3 Del.icio.us is a server-based system with a simple-to-use interface that allows users
to organize and share bookmarks on the internet. The resources del.icio.us is pointing to cover
various formats (text, audio, video, etc.). In particular, the system is not restricted to a single type
(like photos in Flickr). As discussed above, our approach is specially suited for this situation. In
addition to the URL, del.icio.us allows to store a description, an extended description, and tags
(i. e., arbitrary labels). Del.icio.us is online for a sufficiently long time (since May 2002) to allow for
extracting significant time series.

For our experiments, we collected data from the del.icio.us system between July 27 and July 30,
2005 in the following way. Initially we used wget starting from the start page of del.icio.us to
obtain nearly 6900 users and 700 tags as a starting set. Out of this dataset we extracted all users

3http://del.icio.us

http://del.icio.us
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Figure 4.1: Evolution of the ranking of users related to ‘music’. User names are omitted for privacy
reasons.

and resources (i. e., del.icio.us’ MD5-hashed urls). We downloaded in a recursive manner user
pages to get new resources and resource pages to get new users. Furthermore we monitored
the del.icio.us start page to gather additional users and resources. This way we collected a list
of several thousand usernames which we used for accessing the first 10000 resources each user
had tagged. From the collected data we finally took the user files to extract resources, tags, dates,
descriptions, extended descriptions, and the corresponding username.

We obtained a folksonomy with |U | = 75, 242 users, |T | = 533, 191 tags and |R| = 3, 158, 297
resources, related by in total |Y | = 17, 362, 212 tag assignments. We created monthly snapshots
as follows. F0 contains all tag assignments performed on or before June 15, 2004, together with
the involved users, tags, and resources; F1 all tag assignments performed on or before July 15,
2004, together with the involved users, tags, and resources; and so on until F13 which contains all
tag assignments performed on or before July 15, 2005, together with the involved tags, users, and
resources.

Figure 4.1 shows the evolution of the ranking of all users tags that were among the Top 10 in at
least one month for the topic ‘music’. The diagram was obtained with d = 0.85, and the preference
vector ~p set such that the tag ‘music’ gets 50% of the overall preference, the rest is spread uniformly
as described above. The user names have been omitted for privacy reasons. The diagram shows
three outstanding users. The first one could keep the top position for the first four months, followed
by a steep fall. Another user could approach him steadily during the first four months, followed
by almost the same fall. The fall of both was caused by the steep rise of a new user, which also
shadowed the rankings of all other users related to ‘music’. A detailed analysis of this user’s data
in the system revealed us that he posted more than 5500 bookmarks, 85 % of which tagged with
‘music’. In total he used only about 100 tags. The 5500 bookmarks account for about 2% of all
occurrences of ‘music’ in the system (with more than 70.000 users in the system at that time), and
are about 3.5 times as many as those of the second user for that tag.

Figure 4.2 shows the evolution of all tags that were among the Top Ten in at least one month for
the topic ‘politics’. The line for the topic ’politics’ itself can’t be seen, as it has a rank of 1. The
diagram was obtained with d = 0.85, and the preference vector ~p set such that the tag ‘politics’

2007 c© Copyright lies with the respective authors and their institutions



Page 42 of 67 TAGora: Semiotic Dynamics in Online Social Communities

 0

 0.002

 0.004

 0.006

 0.008

 0.01

 0  2  4  6  8  10  12  14

no
rm

al
iz

ed
 r

an
k

month

funny
religion
politics
bushco

bush
economics

usa
humor

activism
war

society
media

us
iraq

news
election
culture

Figure 4.2: Evolution of the ranking of tags related to ‘politics’ over time. ‘Politics’ has value 1.0
due to normalization and is left out for clarity of the presentation of the other values.

gets 50% of the overall preference, while the rest is spread uniformly over the other tags, users
and resources. The diagram shows that the early users of del.icio.us were more critical/idealistic,
as they used tags like ‘activism’, ‘humor’, ‘war’, and ‘bushco’4. With increasing time, the popularity
of these tags faded, and the tags turned to a more uniform distribution, as the closing lines at the
right of the figure indicate. In particular one can discover the rise of the tags ‘bush’ and ‘election’,
both having a peak around the election day, November 2nd, 2004, and remaining on a high level
afterwards. Within the analysis of the topic ‘technology’ (not displayed due to space reasons),
we have discovered a similar trend: The early adopters of del.icio.us used the tag ‘technology’
together with tags like ‘culture’, ‘society’ or ‘apple’, while later tags like ‘gadgets’, ‘news’ or ‘future’
rise, converging towards more mainstream topics.

Both Figures 4.1 and 4.2 show that there is a change of structure in autumn 2004 (month 4 in
the diagrams). This is supported by Figure 4.3 showing the development of the top resources.
Analyzing possible reasons for this change in behavior, one indicator is that the number of elements
passed in month 4 the threshold of 10.000 users, 70.000 tags, and 500.000 resources. Apparently,
with this number of users, one reaches a critical mass which modifies the inherent behavior of
such a system. Figure 4.3 shows the rank of those resources which where among the top 5 at
the beginning or the end. Our hypothesis that the del.icio.us community changes significantly at
month 4 is supported by two observations: specific topics of the beginning, such as web design,
see a decline, while on the other hand, mainstream pages gain rapidly, such as Slashdot, as well
as pages concerned with folksonomies per se.

Finally, we have analyzed those resources that were the strongest winners and losers within spe-
cific topics, according to the popularity change measure defined in Section 4.1.2, to automatically
identify trends within certain topics in del.icio.us. Our aim was to discover trends in the Semantic
Web community in the month around the European Semantic Web Conference (ESWC) 2005.

For the computation, we took those resources that ended up in the Top 100 in the June 2005

4In del.icio.us, ‘bushco’ was used for tagging webpages about the interference of politics and economics in the U. S.
administration.
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http://www.musicplasma.com/

http://www.pixy.cz/apps/barvy/index-en.html
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http://pchere.blogspot.com/2005/02/absolutely-delicious-complete-tool.html
http://www.ficml.org/jemimap/style/color/wheel.html

http://script.aculo.us/
http://www.flickr.com/

http://slashdot.org/
http://www.adaptivepath.com/publications/essays/archives/000385.php

Figure 4.3: Evolution of the global ranking of resources, without specific preference vector.

ranking for the preference vector highlighting the tags ‘semantic_web’, ‘semantic’, ‘web’, and ‘se-
manticweb’, since the top results e. g. in searches are typically the ones attracting the most users.
For these 100 URLs, we computed the popularity change coefficient from May 15 to June 15.
Table 4.1 shows the 20 ULRs with the highest popularity change.

The top winner (#1) is a site about shallow semantic markup in XHTML, which was obviously first
discovered by the community during the period under consideration and made it to the 39th position
out of 2.2M resources; the corresponding line in Table 4.1 shows that the FolkRank value and the
position in May is undefined for this resource, while the rank in June is 0.13065 and the position
in this ranking is 39. Among the followers are articles about the Semantic Web and folksonomies
(e. g. #2, #3, #5, #8, #9, #16), pages about new Semantic Web projects (#4, #15, #17, #19), or
events such as the Scripting workshop (#7) that took place together with the ESWC conference
during the period under consideration, introducing new Semantic Web projects. Note that while
the #1 page leaped from nowhere to the 39th position out of 2.2 million entries, the popularity
change measure still honors movements at the top of the ranking: the Piggy Bank site (which is
an important semantic web project that has been promoted at the ESWC conference), improving
from 21 to 1 in the period, still gets into the top 15 winners.

Together, the results of the FolkRank computation and the popularity change measure presented
in this section can thus be used to get an insight into the structure and development of communities
in folksonomy systems, independent of and across different media types.

4.2.2 Comparison with the Interestingness of Dubinko et. al.

Closest to the approach of this paper is the visualization of Dubinko et. al. (Dubinko et al., 2006).
We tried to get an insight into how our FolkRank compares to the interestingness of (Dubinko
et al., 2006). In that paper, the authors introduce an efficient way of mining large-scale folksonomy
data sets for frequent tags in given time intervals. A measure of interestingness, is introduced and
computed for a sliding one-day window over a Flickr dataset. Similar to the TF/IDF measure from
Information Retrieval, the interestingness is defined as Int(o, I) =

∑
i∈I γ(o, i)/(C +γ(o)), where
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Table 4.1: Popularity Change from May 15 to June 15, 2005.
# URL Pop.Chg. May June

Rank Pos Rank Pos
1 http://mezzoblue.com/downloads/markupguide/ 4.822604 undef undef 0.13065 39
2 http://www.betaversion.org/~stefano/linotype/news/89/ 4.515983 undef undef 0.08296 79
3 http://shirky.com/writings/ontology_overrated.html 0.073704 0.00866 28598 0.39329 4
4 http://simile.mit.edu/piggy-bank/index.html 0.000805 0.05160 377 0.18740 24
5 http://www.dlib.org/dlib/april05/hammond/04hammond.html 0.000183 0.08831 142 0.09532 61
6 http://www.w3.org/2004/02/skos/ 0.000175 0.08282 155 0.08369 78
7 http://www.semanticscripting.org/SFSW2005/ 0.000134 0.09427 124 0.09055 67
8 http://www.scientificamerican.com/article.cfm?... 0.000133 0.08396 152 0.07208 97
9 http://jena.hpl.hp.com/~stecay/papers/xmleur... 0.000129 0.09979 111 0.09990 56

10 http://www.tantek.com/presentations/2004ete... 0.000112 0.09047 137 0.07407 92
11 http://users.bestweb.net/~sowa/peirce/ontometa.htm 0.000111 0.10273 106 0.09550 60
12 http://www.sciam.com/print_version.cfm?articleID=... 0.000101 0.09608 121 0.08178 81
13 http://www.xml.com/pub/a/2001/01/24/rdf.html 0.000089 0.09391 127 0.07314 94
14 http://developers.technorati.com/wiki/hCalendar 0.000071 0.09748 117 0.07389 93
15 http://simile.mit.edu/piggy-bank/ 0.000057 0.29151 21 1.00000 1
16 http://en.wikipedia.org/wiki/Semantic_web 0.000033 0.10472 102 0.07186 98
17 http://www.semanticplanet.com/ 0.000025 0.10893 91 0.07510 90
18 http://pchere.blogspot.com/2005/02/absolute... 0.000023 0.18154 41 0.13729 35
19 http://swoogle.umbc.edu/ 0.000022 0.16785 48 0.12429 43
20 http://www.scientificamerican.com/print_ve... 0.000022 0.13367 68 0.09142 66

γ(o, i) is the number of occurrences of object o in time interval i out of a larger interval I , and γ(o)
is the total number of occurrences of o. As the interestingness is based on a count of occurrences
of items5 in a given interval, it does not allow for an easy integration of topic-specific rankings.
Thus, one obtains a ranking of one particular tag (user, resource), which does not generalize to
related elements of the folksonomy.

We computed the equivalent of Figure 4.3 for the interestingness measure, i.e., we show the
rankings for those resources that were within the Top 5 for any of the months. As our time window
was one month, we used C = 1500 instead of C = 50 as in the original paper which used a
one-day window. For lack of space and because the diagram did not yield any clear structure, we
omit the diagram and summarize the findings.

The top resources were more volatile than in our method. I. e., in our approach, ten different
resources made up the top five over all months. In the interestingness computation, there were 70
resources, i.e. each month had a new top five; Table 4.2 shows the top resource for each month.
This indicates that the interestingness is more sensitive to momentary changes in the folksonomy
than the FolkRank, and makes it harder to discover long- and medium-term trends. In the top
resources, there were few general interest pages such as Slashdot or Flickr. Instead, there were
more sites that seemed to be popular at one particular moment in time, but to fade soon afterwards.
Figure 4.4 presents those four resources out of the 70 that overlap with Figure 4.3. It can be seen
that while the interestingness shows some more jitter, the results have the same general direction
for both computations.

We conclude that the interestingness, while more scalable and lending itself to a sliding-window
visualization as in (Dubinko et al., 2006) due to its computational properties, lacks the dampen-
ing and generalizing effect of the FolkRank computation, so that it is more useful for short-term
observations on particular folksonomy elements.

4.3 Related Work

There are currently only very few scientific publications about folksonomy-based web collaboration
systems. Among the rare exceptions are (Dubinko et al., 2006) as discussed above, (Hammond
et al., 2005) and (Lund et al., 2005) who provide good overviews of social bookmarking tools with
special emphasis on folksonomies, and (Mathes, 2004b) who discusses strengths and limitations

5In (Dubinko et al., 2006), only tags are evaluated. Still, the method can be applied symmetrically to users and
resources.
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Figure 4.4: Evolution of the interestingness values of those resources which overlap with Fig-
ure 4.3; graph plotted the same way as Figure 4.3.

Table 4.2: Top resources for each month according to the interestingness defined in (Dubinko et al.,
2006)

Month Resource Int’ness
0 http://www.pixy.cz/apps/barvy/index-en.html 0.1937
1 http://craphound.com/msftdrm.txt 0.0970
2 http://extensions.roachfiend.com/howto.html 0.1339
3 http://richard.jones.name/google-hacks/gmail-filesystem/gmail-filesystem.html 0.1983
4 http://37signals.com/papers/introtopatterns/ 0.2150
5 http://www.fuckthesouth.com/ 0.1898
6 http://www.supermemo.com/articles/sleep.htm 0.2585
7 http://www.returnofdesign.com/spectacle/specials/colors.html 0.2958
8 http://www.hertzmann.com/articles/2005/fables/ 0.4117
9 http://fontleech.com/ 0.4906

10 http://pro.html.it/esempio/nifty/ 0.6511
11 http://www.alvit.de/vf/en/essential-. . . -developers.html 0.5678
12 http://www.newscientist.com/channel/being-human/mg18625011.900 0.6222
13 http://script.aculo.us/ 0.8478

of folksonomies. The main discussion on folksonomies and related topics is currently only going on
mailing lists, e.g. (Connotea). In (Mika, 2005), Mika defines a model of semantic-social networks for
extracting lightweight ontologies from del.icio.us. Besides calculating measures like the clustering
coefficient, (local) betweenness centrality or the network constraint on the extracted one-mode
network, Mika uses co-occurrence techniques for clustering the concept network.

There are several systems working on top of del.icio.us to explore the underlying folksonomy.
CollaborativeRank6 provides ranked search results on top of del.icio.us bookmarks. The ranking
takes into account, how early someone bookmarked an URL and how many people followed him
or her. Other systems show popular sites (Populicious7) or focus on graphical representations
(Cloudalicious8, Grafolicious9) of statistics about del.icio.us.

The tool Ontocopi described in (Alani et al., 2003) performs what is called Ontology Network Analy-
sis for initially populating an organizational memory. Several network analysis methods are applied

6http://collabrank.org/
7http://populicio.us/
8http://cloudalicio.us/
9http://www.neuroticweb.com/recursos/del.icio.us-graphs/
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to an already populated ontology to extract important objects. In particular, a PageRank-like (Brin
and Page, 1998) algorithm is used to find communities of practice within individuals represented
in the ontology. OntoRank (Ding et al., 2005) uses a PagesRank-like approach on the RDF graph
to rank search results within Swoogle, a search engine for ontologies.

Along the same line, in (Hoser et al., 2006), we have presented a technique for analyzing on-
tologies that considers not only the first eigenvector (as PageRank and Ontocopi do), but the full
eigensystem of the adjacency matrix of the ontology.

In (Amitay et al., 2004), the evolution of the web graph over time is analyzed. The application of
the proposed method lies in the improved detection of current real-life trends in search engines.
In comparison to our work, they base their approach on counting timestamped links on pages
returned by web searches on given topics, while our contribution infers communities around given
users, sites, or topics from the structure of the web graph itself. The algorithm of (Amitay et al.,
2004) can currently not be applied to folksonomies, as there exist no folksonomy search engines
yet.

Kleinberg (Kleinberg, 2006) summarizes several different approaches to analyze online information
streams over time. He distinguishes between three methods to detect trends: using the normal-
ized absolute change, relative change and a probabilistic model. The popularity gradient that we
introduced in Section 4.1.2 is related to the second approach, but differs insofar as it allows for the
discovery of topic-specific trends, and that we honor steep rises more if they occur higher in the
ranking, where the text mining scenario described in (Kleinberg, 2006) requires focusing on words
that are neither too frequent nor too infrequent.

4.4 Markov CLustering algorithm (MCL)

Site ranking algorithms, as for instance the PageRank algorithm (Brin and Page, 1998), use topo-
logical information embedded in a directed network to infer the relative importance of nodes.
In chapter 4 and particularly in section 4.1.1, we introduced a node ranking procedure for folk-
sonomies, the FolkRank algorithm (Hotho et al., 2006a). In contrast with PageRank, FolkRank
provides useful informations also in the case of undirected networks. Taking on a different per-
spective, community detection algorithms can be employed to attempt the detection of relation
similarities at a higher level. We showed an example of a community identification procedure
in section 3.4. A yet different procedure is the Markov Clustering algorithm (MCL), in which a
renormalization-like scheme is used in order to detect communities of nodes in weighted net-
works. In this section, we analyze the commonalities of the two approaches. In particular we begin
to address the relationships between ranking and community identification in folksonomies.

4.4.1 MCL at work

MCL (van Dongen, 2000) is a procedure based on iterative operations on the adjacency matrix
associated with a graph. We recall that the adjacency matrix A of a network is the square matrix
of dimensions n – with n equal to the order of the graph, i.e. the number of nodes in the graph –
that has binary-valued entries Aij = 1 if there exist a link connecting nodes i and j, and Aij = 0
otherwise. In the case where links connecting nodes have a weight associated with them, then
Aij equals the weight wij of the link connecting nodes i and j. The MCL algorithms proceeds as
follows:

1. The adjacency matrix is normalized so that, for each column, the sum of its entries is equal
to unity; in this way one builds the so-called normal matrix N of the graph, known also as
transition matrix; Although the normal matrix is no more symmetric, its eigenvalues are real;

2. The normal matrix gets squared, i.e. a new matrix M = N2 is built;
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3. Each element of the matrix M , which is also a transition matrix with normalized columns,
is then raised to a power γ > 1; this step has the effect of reducing the importance of the
smaller column elements with respect to the larger ones.

4. the resulting contracted matrix is normalized and the procedure of point 2 is repeated until
convergence is reached.

The physical interpretation of the MCL procedure is quite natural in terms of random walkers mov-
ing on the network. Each element Nij of the normal matrix can be viewed as the probability that
a random walker sitting on node j jumps to one of its nearest neighbors. This probability is by
construction proportional to the link weight wij . Each element of the squared matrix N2

ij , in turn,
gives the probability that the random walker jumps to the second neighbor i of node j in two steps.
The successive contraction has the effect to dump all those less probable paths. As a result of
the convergence, the walker will tend to stay inside (if existing) islands of nodes, which one can
interpret as communities. A sketch of the MCL algorithm at work is displayed in Fig. 4.5.

Figure 4.5: Illustration of a typical MCL procedure applied to an unweighted network. Here the
contraction parameter γ has the default value γ = 2. The original network is displayed in the
upper left frame, while the result of the procedure, after convergence, is the disjoint, star-like
graph shown in the lower right frame. This image was taken from the official MCL web site http:

//micans.org/mcl/ . For more information, see also the appendix A.7.

4.4.2 Comparison between MCL and FolkRank

Since the FolkRank algorithm, too, can be viewed in terms of random walkers on a graph, it seems
rather natural to investigate how the MCL and FolkRank algorithms are related to each other. One
main difference is that FolkRank only provides information about the community to which a given
node belongs to (by relating it to the highest ranked node in the same community), while MCL
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provide global information on the community structure of the network, at least in principle. The
advantage of FolkRank is that it also provides a ranking of results and thus it may have an important
impact in improving the navigability of folksonomies. Finally, since FolkRank only provides local
information, it scalability with the size of the network is much better than the scalability of MCL, and
this makes it more appealing for deployment in a production system. In order to empirically test
the similarities between the two methods, we performed some preliminary experiments, described
in the following. We ran MCL on a subset of the Bibsonomy weighted tag co-occurrence network
and obtained a list of star-like clusters of tags, which were labeled according to the node (tag)
lying at the center of the star. Then, we selected an arbitrary tag X (“sciencefiction”) and
computed the FolkRank value of all the tags of the network, using a preferential vector pointing
towards the chosen tag X (see section 4.1.1). The idea of the experiment is to explore the relation
between the computed FolkRank values and the community structure identified via MCL: For each
tag cluster identified by MCL we computed the average FolkRank value of its member tags. Fig. 4.6
shows the result of this analysis, and we can clearly recognize that FolkRank is indeed correlated
with the communities found by MCL, since the cluster to which the tag X (“sciencefiction”)
belongs to has the highest FolkRank value. Some of the entries in Fig. 4.6 seem rather spurious,
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Figure 4.6: The communities of tags detected by MCL (ran with default parameters) are labeled
with the tag of the node lying at their respective centers. For each cluster, the average FolkRank
of its nodes is shown as a horizontal axis value.

e.g. the entry “tuak”. In Fig. 4.7 we show that this is mainly due to an excessive importance
attributed to clusters of small size.
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Figure 4.7: Size (number of nodes) of the communities detected by MCL, labeled according to the
tag that corresponds to the central node of each cluster.
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Chapter 5

Exploiting the Semantics of Tag
Co-Occurrence

5.1 Automatic Organization of Tags

In this chapter we will present the Tag-Organizer system (T-ORG) which automatically classifies the
resources of a tagging system into predefined categories and thus can provide a better browsing
experience to the user.

The classification of resources is based on the classification of tags attached to these resources.
If a resource has two tags belonging to two different categories, then the resource is classified as
both of these categories. For example, if a resource has the tags “Paris” and “Peugeot” and these
tags are classified as “Location” and “Vehicle” respectively, then the resource is placed in both of
these categories (i. e., Location and Vehicle). Tag classification can help a user to use tags on a
tagging system in a more organized way. For example, instead of representing different tags in
a tag cloud, sometimes it could be more useful, if a “Tag Cloud” displays the abstract tags (i. e.,
categories) and when a user clicks an “abstract tag”, its subsequent tags are displayed. In such
way, a user can explore different type of tags (and hence resources) available on a tagging system,
which might not be possible with a simple “Tag Cloud”.

The T-ORG system exploits two different sources of information. On the one hand, it exploits the
semantics of the tag co-occurrence network. For this purpose, we define four different context
in 5.2.2 which basically correspond to the related tags in the co-occurrence network. The contexts
can be used for disambiguating tags. For example, if the tag “Ford” means the car than the context
will very likely contain further tags from the vehicle category. But if the tag “Ford” means the former
US president or another person with the name then the context will likely contain tags related
to the person category. T-ORG also uses on the other hand semantic background knowledge
coming from ontologies found on the web. For example, such an ontology may contain hierarchical
knowledge like “Paris” is a city and a city is a location.

The disambiguation by means of the tag context was then used in a further step where different
tags and/or resources were assigned to several predefined categories like location or person.
During the experiment we also used semantic background knowledge for improving the results.
The background knowledge came from ontologies found on the web from which we exploited the
hierarchical knowledge that e.g. “Paris” is a city and that a city is a location. Both sources of
information (the relations in the co-occurrence network and the background knowledge coming
from ontologies) are then combined by T-ORG for categorizing tags into hierarchies.

The core of T-ORG is its classification method T-KNOW (Tag classification using KNowledge On
the Web). It is based on an unsupervised mechanism for classifying tags in folksonomies. T-KNOW
uses Google for finding categories of tags; therefore it does not require any training and can be
used for unsupervised classification of tags (like (Cimiano et al., 2005)). It classifies the tags into
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Figure 5.1: Process of T-ORG.

categories using its pattern library, categories extracted from a given ontology and Google search
results. As there might be several results returned by Google against a query posed by T-KNOW, a
method is required to select best results on the basis of the similarity between tagging and search
results. T-KNOW uses the context of the tag to measure the similarity between Google search
results and the tag. We also propose four methods of selecting the context of a tag.

5.1.1 Process of the Tag-Organizer (T-ORG)

The purpose of T-ORG is to organize resources by classifying their tags into categories. This
process is done by selecting concepts from single or multiple ontologies related to the required
categories and then pruning and refining these ontologies. These concepts are considered as
categories into which the tags are classified. Fig. 5.1 shows the overall process of T-ORG while
each step is described below.

Selecting Ontology

The user of T-ORG has to decide about the categories into which the resources are to be classified.
The user selects ontologies relevant to the required categories. Concepts from these ontologies
are used as categories. For example to browse through the images of vehicles at Flickr, one would
select a vehicle ontology. Currently this step is done manually in T-ORG.

Pruning and Refining Ontology

After selecting ontologies, they must be pruned and refined for the desired categories. Only those
concepts from these ontologies are considered which have some relation to the required cate-
gories. Unwanted concepts are pruned. Redundant and conflicting concepts are refined. Missing
concepts are also added into the given ontology. For example to include the images of a “draisine”,
one might have to add this concept into a given vehicle ontology. Once the ontology is pruned and
refined, its concepts are used as categories. Currently this step is also done manually in T-ORG.
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Figure 5.2: Process of T-KNOW.

Applying T-KNOW for Classifying Tags

Classifying the tags is a major step in the process of T-ORG. After the ontology is selected, pruned,
refined, and categories are extracted from it, these categories and the context of tags are used for
classification. Once all tags are classified into categories, each category is subsumed by its parent
category, for example, every tag classified as Train, Bulldozer or Bus is finally classified as Vehicle.
Section 5.2 describes the detailed process of classifying tags using T-KNOW.

Browsing the Resources

After classifying each tag, resources may be browsed according to the categories assigned to their
tags. The browser may use information of resources to display them in categories, so that the user
can browse particular type of resources present in these categories.

5.2 Tag classification using Knowledge On the Web (T-KNOW)

T-KNOW uses lexico-syntactic patterns and Google APIs for finding the appropriate categories of
the tags. Given a list of tags and categories, T-KNOW classifies these tags into categories. It builds
queries by combining linguistic patterns (Hearst Patterns (Hearts, 1992) and a few more (Cimiano
et al., 2005)) and the categories and then searches these queries on Google using Google API.
The process of classifying tags using T-KNOW is shown in Fig. 5.2. Following, we describe in more
detail the steps shown in Fig. 5.2.

Assume the tag “Paris” is to be classified in a context as depicted in Fig. 5.3

Step 1 Queries are generated by concatenating the tag and the clues, e.g. “such as Paris” is a
query generated by combining the clue “such as” and the tag “Paris”

Step 2 The queries are searched using the Google API and abstracts of search results are down-
loaded, e.g. “To witness a city such as Paris surrendered itself. . . ” is a search result abstract
downloaded for the query “such as Paris”
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Step 3 The similarity between each abstract and context (described in Section 5.2.1) of tag is
computed, e.g. between the abstract “To witness a city such as Paris. . . ” and context of the
tag “Paris” (eiffel tower, france, miniatures. . . ). If similarity is above a certain threshold value,
then depending upon the clue used, the abstract is matched against the pattern, e.g. the
abstract “To witness city such as Paris. . . ” is matched against the Hearst pattern (Hearts,
1992) “CONCEPT such as (INSTANCE,?)+ ((and|or) INSTANCE)”, where CONCEPT is the
expected category and INSTANCE is the tag. Hence “City” is extracted as an expected
category of the tag “Paris” from this abstract.

Step 4 The results are aggregated and the category having highest similarity with the tag’s context
is returned, e.g. for the tag “Paris” the category “City” is returned, because it has higher
similarity than the other category e.g. “University”

5.2.1 Measuring similarity between search results and tags

There can be multiple ways for computing the similarity between the search result and the tag
depending upon the context of the tag. We have proposed four methods of selecting the context of
the tag. For measuring similarity between Google search result and the context of a tag, the cosine
measure is computed between the bag of word representations of the abstract of the downloaded
search result ~a and the context ~C of the tag t. These vectors simply represent the words and their
frequencies (occurrences), and a cosine measure between them represents that how similar they
are. If the cosine measure is above a certain threshold value, the result is considered for further
processing. The cosine measure is calculated as

cos(∠(~C,~a)) =
~C · ~a

‖~C‖ · ‖~a‖
(5.1)

Section 5.3.2 presents different results obtained using different threshold values and different con-
texts. To understand the different contexts, consider the images in Fig. 5.3. The left most image
shows the “Eiffel Tower” while the image in the middle shows “Notre Dame” and the right most a
cow.

Tagging system (or Folksonomy) is formally defined in section 2.1, in addition to it, we also use
the set of groups G that might be found in some tagging systems (like Flickr). Users can post
their resources to these groups. In the following we will define four different contexts which help in
categorizing tags appropriately.

5.2.2 Context Definitions

Resource Context (R)

In order to represent a tag by its context, we here consider the case of resource context. We
choose the tags that belong to the current resource except the tag (to be classified) itself. The
Resource Context of tag t for resource r can be defined as

CR(t, r) = {t′ ∈ T\{t} | (u, t′, r) ∈ Y ∧ u ∈ U} (5.2)

We are also interested in the frequency of ti in resource rj (in case of Flickr it is at most 1, because
one tag can occur only at most once in a resource) to create a bag of words using this context.
WR(t, r) represents the number of times tag t appears with resource r.

WR(t, r) =| {(u, t, r) ∈ Y | u ∈ U} | (5.3)
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Figure 5.3: Sample Images with Tags.

We can get the Resource Context of a tag t of resource r using CR(t, r) and for each tag t in the
Resource Context of tag t, we can get its number of occurrences in resource r using WR(t, r).
We can define a bag-of-words resource context representation of a tag t appearing in resource r,
i. e., by

BR(t, r) = {(t′,WR(t′, r)) | t′ ∈ CR(t, r)} (5.4)

Note that BT , BSU , and BSG can be defined in the similar manner for Tag, Social
User, and Social Group contexts respectively. Consider that we want to classify the tag
“Paris” of the Eiffel-Tower image in Fig. 5.3, only the tags of the Eiffel-Tower image are
selected as the context. With the Eiffel-Tower image denoted as r1 we get the follow-
ing resource context: CR(Paris, r1) = {Eiffel Tower, France, Miniatures, Eiffel, Eyeful, Big}.
The bag-of-words representation of the tag “Paris” of Eiffel-Tower will be BR(Paris, r1) =
{(Eiffel Tower, 1), (France, 1), (Miniatures, 1), (Eiffel, 1), (Eyeful, 1), (Big, 1)}.

Tag Context (T)

In case of Tag Context, we select all the tags joint to the resources having the tag t, except the tag
t itself. Tag Context can be defined as

CT (t) = {t′ ∈ T\{t} | (u, t, r) ∈ Y ∧ (u′, t′, r) ∈ Y ∧ u ∈ U ∧ u′ ∈ U ∧ r ∈ R} (5.5)

In parallel to equation 5.4 we define a bag of words representation using this context. We define
WT (t, t′) that represents the number of times tag t appears with tag t′.

WT (t) =| {(u′, t′, r) ∈ Y | (u, t, r) ∈ Y ∧ u ∈ U ∧ u′ ∈ U ∧ r ∈ R} | (5.6)

We can get the Tag Context of a tag t using CT (t) and for each tag t′ in the Tag Context of tag t,
we can get its number of occurrences with tag t using WT (t, t′).
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Consider that we want to classify the tag “Paris” of the image Eiffel-Tower. All tags of images having
the tag “Paris” are selected as the Tag Context except the tag “Paris” itself. In example of Fig. 5.3,
Eiffel-Tower and Notre-Dame have the tag “Paris”, so all the tags of the images Eiffel-Tower and
Notre-Dame are added to the context of the tag “Paris” except the tag “Paris” itself, and number
of occurrences of each of these tags with tag t can be calculated using WT . Thus, BT (Paris) =
{(Eiffel Tower, 1), (France, 2), (Miniature, 1), (Eiffel, 1), (Eyeful, 1), (Big, 1), (Notre-Dame, 1),
(Night, 1), (Lights, 1)} is the bag-of-word representation constructed using Tag Context of the tag
“Paris”.

Social User Context (SU)

In case of Social User Context of a tag t, we select all the tags used by a user u, except the tag t
itself. Social User Context of tag t of user u can be defined as

CSU (t, u) = {t′ ∈ T\{t} | (u, t′, r) ∈ Y ∧ r ∈ R} (5.7)

In parallel to equation 5.4 we define a bag of words representation using this context. We define
WSU (t, u) that represents the number of times tag t is used be the user u.

WSU (t, u) =| {(u, t, r) ∈ Y | r ∈ R} | (5.8)

Consider that we want to classify the tag “Paris” of the image Notre-Dame that belongs
to user B. All tags of images that belong to the user B are selected as the con-
text except the tag “Paris” itself. In example of Fig. 5.3, the images Notre-Dame and
Cow belong to the user B, so all the tags of the images Notre-Dame and Cow are
added to the context of the tag “Paris” except the tag “Paris”. Thus, BSU (Paris, B) =
{(Notre Dame, 1), (France, 2), (Night, 1), (Lights, 1), (Savoie, 1), (2001, 1), (Field, 1), (Cow, 1)}
is the bag-of-word representation constructed using social user context.

Social Group Context (SG)

In case of Social Group Context of tag t that is present in group(s) g, we select all the tags of all
resources present in the same group g, except the tag t itself. The Social Group Context can be
defined as

CSG(t, g) = {t′ ∈ T\{t} | (u, t′, r) ∈ Y ∧ u ∈ U ∧ r ∈ R ∧ g ∈ Group(u, r)} (5.9)

where Group(u, r) is a function which returns the groups that contain the user u and resource r.
In parallel to equation 5.4 we define a bag of words representation using this context. We define
WSG(t, g) that represents the number of times tag t appears in the group g.

WSG(t, g) =| {(u, t, r) ∈ Y | u ∈ U ∧ r ∈ R ∧ g ∈ Group(u,r)} | (5.10)

Consider that we want to classify the tag “Paris” of the image Eiffel-Tower that belongs
to group 1. All tags of images present in group 1 are selected as the context ex-
cept the tag “Paris” itself. In example of Fig. 5.3, the images Eiffel-Tower and Cow
are present in group 1, so all the tags of the images Eiffel Tower and Cow are added
to the context of the tag “Paris” except the tag “Paris” itself. BSG(Paris, Group1) =
{(Eiffel Tower, 1), (France, 2), (Miniatures, 1), (Eiffel, 1), (Eyeful, 1), (Big, 1), (Savoie, 1), (2001, 1),
(Field, 1), (Cow, 1)} is the bag-of-word representation constructed using social group context.

2007 c© Copyright lies with the respective authors and their institutions



Page 56 of 67 TAGora: Semiotic Dynamics in Online Social Communities

5.3 Evaluation

In order to evaluate our system, we have used images, tags, user, and group information from
Flickr website. We asked two persons to classify the data into four categories. We have then
classified the same data set using T-KNOW in order to evaluate T-KNOW.

5.3.1 Experimental Setup

To organize tags into predefined categories, we have chosen four categories “Person”, “Location”,
“Vehicle”, and “Organization”. To get ontologies related to these categories, we have searched
Swoogle (Ding et al., 2004) for general purpose ontologies and used the ontology OntoSem. For
this ontology, we have used concepts and sub-concepts of p1:vehicle, p1:organization, p1:place,
p1:geopolitical-entity, and p1:human as categories. We have used a total of 932 concepts as
categories out of this ontology.

After selecting the categories, we have gathered data from groups present at the Flickr website.
Users can post their images to different groups on Flickr. One group usually contains images
related to the topic of that group. For example, the vehicles group contains images of vehicles. We
have searched for groups related to the topics (i) people, (ii) locations, and (iii) vehicles using the
group search facility provided by Flickr, and then selected three groups from each topic. We have
selected only those groups which had at least 100 images and 25 members. The groups selected
were candid_celebrity, 35212032@N00 (famous people), politicians, CarDirectory, classic_cars,
vehicles, PraiseAndCurseOfTheCity, signcity, and cities. Out of these groups, only the “famous
people” group had 27 members and 165 images, all other groups had at least 100 members and
more than 500 images. We have then randomly selected 21 images from each of these nine
groups. There were a total of 1754 tags in all of these 189 images.

We asked two persons K and S (human classifiers) to classify the tags. They did not have any
kind of information about this research and method. They have classified all the tags regardless of
the language and spelling mistakes, which has of course affected the results of T-KNOW because
T-KNOW uses English patterns for identifying categories. For example, the users have classified
the tags “Russia” and “Russland” (German word for Russia) as location, whereas T-KNOW was
unable to identify “Russland”, as this is not an English word and hence is not supported by the
pattern library used. A spreadsheet was provided to each human classifier with resources, tags,
and links to the original Flickr images, Wikipedia, and Google. For example if a user finds a tag
“Essen” (a German city as well as the German word for meal) and is unable to decide about its
category, he can view the image (in which this tag is present) on Flickr website, if this image is not
helpful to identify the tag, he can search it in Wikipedia, and still if it unclear, then he can find it
in Google. Human classifiers (K and S) agreed upon classification of only 1166 tags out of 1754
tags.

5.3.2 Results

This section contains the results obtained by classifying tags using T-KNOW with different con-
texts and threshold values. We have used F-measure and Cohen’s Kappa for evaluation of
our method. F-measure is a common measure in information retrieval, in case of tags clas-
sification we have computed F-measure as, if A = set of correct classifications by test, B =
set of all classifications by Gold Standard, C = set of all classifications by test (In our evaluation,
user K is the gold standard, and test is either user S or T-ORG) then, we define Precision, Recall,
and F-measure as

Precision =
A

C
(5.11)
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Figure 5.4: F-Measure with user K defining the gold standard.

Recall =
A

B
(5.12)

F −Measure =
2 ∗ Precision ∗Recall

Precision + Recall
(5.13)

Fig. 5.4 displays the F-measure with user K defining the gold standard and T-KNOW using different
threshold values and contexts and it also shows the F-measure of the classification of user K and
user S (shown as a constant line). Due to the possibility of classification that might occur just by
chance, we have also calculated the Cohen’s Kappa (Cohen, 1960) between a user’s classification
and the system’s prediction. Cohen’s Kappa is defined as

K =
P0 − Pc

1− Pc
(5.14)

where P0 is the observed agreement between classifiers and Pc is the agreement occurred due
to chance. If the two classifiers agree completely, then the value of Cohen’s Kappa is 1. Fig. 5.5
shows the Kappa values of the classification of user K and T-KNOW (with different threshold values
and contexts) and it also shows the Cohen’s Kappa value between the classifications of user K and
user S (shown as a straight line).

5.3.3 Discussion

The task of organizing resources by classifying tags in a tagging system is not trivial. It is observed
that two humans classifying the same data set might not totally agree with each other, as observed
in the case of humans classifiers of user K and user S, the Kappa value was 0.53, whereas this
value would be 1 in case of complete agreement between classifiers.

The best F-measure obtained was 0.66 with the context Social Group (SG) at thresholds of 0.10
and 0.15 and this small advantage was stable over other thresholds except 0.25. The F-measure
is affected by the problem of classification by chance. Therefore we have calculated Cohen’s
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Figure 5.5: Cohen’s Kappa values for classification of T-KNOW and User S with user K defining
the gold standard.

Kappa (Cohen, 1960) to measure the agreement between two users and between T-KNOW and
user K. The majority class (“Other” in our case) scores zero in Cohen’s Kappa (Cohen, 1960). F-
measure lacks this property. The Cohen’s Kappa between classification of users K and S was 0.53
(shown as a straight line in fig. 5.5), which shows the disagreement between the classifications
of human users. Best kappa value for gold standard (user K) was 0.35 with Social Group (SG)
context and using threshold of 0.10 or 0.15.

The results show that, the different approaches for selecting a context are statistically not signifi-
cantly different. Keeping in view the small difference between different approaches, Social Group
(SG) context has given overall better results as compared to other contexts. This is because the
tags which are chosen as context belong to the same type of resources/images (as a group mostly
contains same type of resources). In case of other contexts, tags of the resources with different
subjects might be selected as context, which might affect the similarity measure.
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Chapter 6

Conclusion and Outlook

This deliverable described several measures for analyzing the datasets collected in WP1 of the
TAGora project. In particular, we analyze the topological properties of folksonomy hypergraphs
and tag co-occurrence graphs. The analysis reveals the small-world character of the network,
identifies the undesired contribution of spammer users, and exhibits semantic correlations in tag
co-occurrence.

A clustering technique applied for the classification of resources could reveal the shared semantics
of tags, resulting from the uncoordinate activity of users.

At the same time, such an activity is dynamic in its very nature. A ranking algorithm specifically
designed for folksonomy network (so called Folkrank), could give insight in this dynamics providing
an effective trend detection. Incidentally, we presented a preliminary study, bridging this node
ranking procedure with a known community detection algorithm in networks.

Finally, we describe an unsupervised system for the automatic classification of resources, named
T-ORG. T-ORG is based on the categorization of tags, it makes use of ontologies found on the
web, and, ultimately, realizes the classification using Google for associating tag to categories.

In the next year, our work will be further developed into two directions: On the one hand, we plan
to further investigate clustering and social properties of folksonomies, e.g. for detecting user com-
munities. On the other hand, we will investigate in how far it is possible to incorporate background
knowledge into the data analysis.
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Appendix A

Tools

This chapter offers an overview of the tools mostly used to obtain the results presented in this
deliverable. It is not the goal of this chapter to give a detailed roundup of all available applications.

A.1 Net

License: Free for non-commercial use

OS: Linux only

URL: http://pil.phys.uniroma1.it/~servedio/software.html

Objective: Creation and Statistical Analysis of complex networks

This program was written in C language inside the TAGora project. It is continuously under devel-
opment, growing as soon as new kinds of statistical analysis need to be performed on complex
networks.

The input parameters of the program can be inserted either editing a plain text file, or running a
graphic user interface generated using Qt3 libraries. The statistical analysis of the input network
may be directly directed to the standard numerical analysis packages in common use among physi-
cist’s community. Networks may also be visualized by means of external programs as Graphviz
and/or Grip directly linked to the program.

Complex networks can be imported from plain text files, specifying the list of links, which can be
directed and weighted, one link in each row. Particularly complex graphs may be reduced to less
number of nodes using a tunable minimum betweenness criterion. Communities may be detected
by means of the spectral analysis of the graph.

The following network related statistical quantities can be analyzed:

• degree distribution

• clustering coefficient (also up to the second neighbors)

• degree correlations

• site and edge betweenness

• distribution of pair distances

• cluster dimensions of graph disjoint components

Furthermore, the program is able to generate random networks according to some of the existent
graph generation models. In order to analyze the ensemble statistics associated with a model,
many realizations of the model may be generated and analyzed in one shot.

http://pil.phys.uniroma1.it/~servedio/software.html
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A.2 Pajek

License: Free for non-commercial use

OS: Windows, Linux (via Wine)

URL: http://vlado.fmf.uni-lj.si/pub/networks/pajek/

Objective: Analysis and visualization of large networks

Pajek is a tool especially aimed at the analysis and visualization of large networks. Furthermore,
it can be used for factorizing a large network into several smaller networks on which then more
sophisticated analysis methods can be applied (cf. (Batagelj and Mrvar, 1998)). The size of the
networks which can be analyzed with Pajek is only limited by the size of the available memory.
Because most social networks are weakly connected, Pajek doesn’t use matrices to represent a
network but instead it only saves the for each vertex the connecting edges or arcs. Furthermore, it
doesn’t keep labels and names of nodes in extremely large networks. This makes it possible, that
it can be applied on networks with more than 1 million nodes (cf. (Huisman and van Duijn, 2005)).
A detailed overview of Pajek’s capabilities and how to use it is available in (de Nooy et al., 2005).

Pajek supports several export and import formats. For example, it can import network data from
UCINET1. Furthermore, there exist tools which can be used for converting CSV and Excel files
into the Pajek format (see A.3). The visualizations of networks can be amongst others exported to
EPS, SVG, BMP and VRML. Furthermore, it offers interfaces to tools for statistical analysis like R
and SPSS.

A.3 Text2Pajek

License: Free

OS: Windows

URL: http://www.fas.at/science/downloads/apps/text2pajek.zip

Objective: Creating input files for Pajek (see A.2).

This is a small tool for converting CSV files, e.g. created from the content of data bases, into input
files for Pajek.

A.4 GNU Octave

License: GPL

OS: Windows, Linux, Mac OS X

URL: http://www.gnu.org/software/octave/

Objective: High-level language for numerical computations, Manipulation of matrix representa-
tions of network graphs

GNU Octave is a general, high-level language which is intended for doing numerical computations.
It has a command line interface and may also be used as a batch-oriented language. Besides the
numerical computation capabilities it also offers an interface to gnuplot2 for displaying graphics. In
TAGora Octave may be used for manipulating the matrix representations of network graphs.

1For a description of UCINET see (Huisman and van Duijn, 2005).
2http://www.gnuplot.info/
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A.5 T-ORG

License: Free for non-commercial use

OS: Platform Independent

URL: http://www.uni-koblenz.de/~abbasi/publications/T-ORG.pdf

Objective: Classify resources present on a tagging system by tag classification.

T-ORG provides a mechanism to organize resources present on a tagging system by classifying the
tags attached to them into predefined categories. Supervised classification in case of large tagging
systems seems infeasible; therefore the classification algorithm of T-ORG called T-KNOW does
not require any training. A more detailed description of the system and evaluation experiments
are available in chapter 5. The source code and binaries of T-ORG are available at the above
mentioned URL.

A.6 Boost – C++ libraries

License: Free

OS: Linux, Windows

Requirements: C++ Compiler

URL: http://sourceforge.net/project/showfiles.php?group_id=7586&package_id=

8041&release_id=504013

Objective: Computation of graph characteristics.

For the computation of characteristic path length and the clustering coefficient of graphs, one
can use the Boost Graph library. This library provides free peer-reviewed portable C++ source
code and offers the functionality to apply standard analysis methods of graph characteristics. The
generic graph components and algorithms were developed by Jeremy Siek and a team at the Uni-
versity of Notre Dame. To describe the characteristic path length of a graph, shortest paths were
needed, which is computed by the breadth-first-search() function. According to our graph mode,
the breadth-first-search() function includes performing a breadth-first traversal of an undirected
graph. In more detail, ’a breadth-first traversal visits vertices that are closer to the root before visit-
ing vertices that are further away. In this context, distance is defined as the number of edges on the
shortest path from the source vertex’. The breadth-first-search() function can be used to compute
the shortest paths from the root to all reachable vertices and the resulting shortest-path distances
(B. Dawes, 2007). To measure the clustering coefficient, one can also use the implementation of
the Graph Boost library and a clustering approximation according to (Schank and Wagner, 2005).

A.7 MCL

License: GNU General Public License

OS: Linux

URL: http://micans.org/mcl/

Objective: Community detection in networks

http://www.uni-koblenz.de/~abbasi/publications/T-ORG.pdf
http://sourceforge.net/project/showfiles.php?group_id=7586&package_id=8041&release_id=504013
http://sourceforge.net/project/showfiles.php?group_id=7586&package_id=8041&release_id=504013
http://micans.org/mcl/
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Notes: Part of official Debian releases

The MCL algorithm (van Dongen, 2000) is short for the Markov Cluster Algorithm, a fast and scal-
able unsupervised cluster algorithm for graphs based on simulation of (stochastic) flow in graphs.
The algorithm was invented/discovered by Stijn van Dongen at the Centre for Mathematics and
Computer Science (also known as CWI) in the Netherlands.

The MCL algorithm simulates flow using (alternating) two simple algebraic operations on matrices.
The first operation used by MCL is expansion, which coincides with normal matrix multiplication.
Expansion models the spreading out of flow, becoming more homogeneous. The second is infla-
tion, which is mathematically speaking a Hadamard power followed by a diagonal scaling. Inflation
models the contraction of flow, becoming thicker in regions of higher current and thinner in regions
of lower current. The MCL process causes flow to spread out within natural clusters and evaporate
in between different clusters. By varying parameters, clusterings on different scales of granular-
ity can be found. The number of clusters can not and need not be specified in advance, but the
algorithm can be adapted to different contexts.

The basic interface to the MCL algorithm is very simple: you need only one option (the -I flag) to
get to the heart of it, and for large graphs you should also be aware of the the -scheme flag for
regulating resources. The default approach is to vary the argument to -I over some interval (doing
an MCL run for each value), and analyze the clustering output with the other utilities that come with
the MCL package.
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