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Collaborative tagging has been quickly gaining ground because of
its ability to recruit the activity of web users into effectively
organizing and sharing vast amounts of information. Here we
collect data from a popular system and investigate the statistical
properties of tag cooccurrence. We introduce a stochastic model of
user behavior embodying two main aspects of collaborative tag-
ging: (i) a frequency-bias mechanism related to the idea that users
are exposed to each other’s tagging activity; (ii) a notion of
memory, or aging of resources, in the form of a heavy-tailed access
to the past state of the system. Remarkably, our simple modeling
is able to account quantitatively for the observed experimental
features with a surprisingly high accuracy. This points in the
direction of a universal behavior of users who, despite the com-
plexity of their own cognitive processes and the uncoordinated
and selfish nature of their tagging activity, appear to follow simple
activity patterns.

online social communities � statistical physics � social bookmarking �
information dynamics

Recently, a new paradigm has been quickly gaining ground on
the World Wide Web: collaborative tagging (1–3). In web

applications like Del.icio.us (http://del.icio.us), Flickr (www.
f lickr.com), CiteULike (www.citeulike.org), and Connotea
(www.connotea.org), users manage, share, and browse collec-
tions of online resources by enriching them with semantically
meaningful information in the form of freely chosen text labels
(tags). The paradigm of collaborative tagging has been success-
fully deployed in web applications designed to organize and
share diverse online resources such as bookmarks, digital pho-
tographs, academic papers, music, and more. Web users interact
with a collaborative tagging system by posting content (re-
sources) into the system, and associating text strings (tags) with
that content, as shown in Fig. 1. At the global level, the set of
tags, although determined with no explicit coordination, evolves
in time and leads toward patterns of terminology usage that are
shared by the entire user community. Hence, one observes the
emergence of a loose categorization system that can be effec-
tively used to navigate through a large and heterogeneous body
of resources.

Focusing on tags as basic dynamical entities, the process of
collaborative tagging falls within the scope of semiotic dynamics
(4–6), a new field that studies how populations of humans or
agents can establish and share semiotic systems, typically driven
by their use in communication. Indeed, the emergence of a
folksonomy exhibits dynamical aspects also observed in human
languages (7, 8), such as the crystallization of naming conven-
tions, competition between terms, takeovers by neologisms, and
more.

In the following, we adopt the point of view of complex
systems science and try to understand how the ‘‘microscopic’’
tagging activity of users causes the emergence of the high-level
features we observe for the ensuing folksonomy. We ground our
analysis on actual tagging data extracted from Del.icio.us and
Connotea and use standard statistical tools to gain insights into
the underlying tagging dynamics. Based on this, we introduce a
simple stochastic model for the tagging behavior of an ‘‘average’’
user, and show that such a model, despite its simplicity, is able
to reproduce extremely well some of the observed properties. We

close giving an interpretation of the model parameters and
pointing out directions for future research.

Results
Data Analysis. The activity of users interacting with a collabora-
tive tagging system consists of either navigating the existing body
of resources by using tags, or adding new resources to the system.
To add a new resource to the system, the user is prompted for
a reference to the resource and a set of tags to associate with it.
Thus the basic unit of information in a collaborative tagging
system is a (user, resource, {tags}) triple, here referred to as post.
Tagging events build a tripartite graph (with partitions corre-
sponding to users, resources and tags, respectively) and such a
graph, commonly referred to as folksonomy, can be subsequently
used as a navigation aid in browsing tagged information (see Fig.
2). Usually, a post contains also a temporal marker indicating the
physical time of the tagging event, so that temporal ordering can
be preserved in storing and retrieving posts. Here we analyze
data from Del.icio.us and Connotea and investigate the statistical
properties of tag association. Specifically, we select a semantic
context by extracting the resources associated with a given tag X
and study the statistical distribution of tags cooccurring with X
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Fig. 1. Collaborative tagging. Schematic depiction of the collaborative
tagging process: web users are exposed to a resource and freely associate tags
with it. Their interaction with the system also exposes them to tags previously
entered by themselves and by other users. The aggregated activity of users
leads to an emergent categorization of resources in terms of tags shared by a
community.
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(see Table 1). Fig. 3 graphically illustrates the associations
between tags and posts, and Fig. 4 reports the frequency-rank
distributions for the tags cooccurring with a few selected ones.
The high-rank tail of the experimental curves displays a power-
law behavior, signature of an emergent hierarchical structure,
corresponding to a generalized Zipf’s law (9) with an exponent
between 1 and 2. Because power laws are the standard signature
of self-organization and of human activity (10–12), the presence
of a power-law tail is not surprising. The observed value of the
exponent, however, deserves further investigation because the
mechanisms usually invoked to explain Zipf’s law and its gen-
eralizations (13) do not look very realistic for the case at hand,
and a mechanism grounded on experimental data should be
sought.

Moreover, the low-rank part of the frequency-rank curves
exhibits a flattening typically not observed in systems strictly
obeying Zipf’s law. Several aspects of the underlying complex
dynamics may be responsible for this feature: on the one hand,
this behavior points to the existence of semantically equivalent
and possibly competing high-frequency tags (e.g., blog and
blogs). More importantly, this f lattening behavior may be as-
cribed to an underlying hierarchical organization of tags cooc-
curring with the one we single out: more general tags (seman-
tically speaking) will tend to cooccur with a larger number of
other tags. In this scenario, we expect a shallower behavior for
tags cooccurring with generic tags (e.g., blog) and a steeper
behavior for semantically narrow tags (e.g., ajax, see also Fig. 3).
To better probe the validity of this interpretation, we investigate
the cooccurrence relationship that links high-rank tags, lying well

within the power-law tail, with low-rank tags located in the
shallow part of the distribution. Our observations [see support-
ing information (SI)] point in the direction of a nontrivial
hierarchical organization emerging out of the collective tagging
activity, with each low-rank tag leading its own hierarchy of
semantically related higher-rank tags, and all such hierarchies
merging into the overall power-law tail.

A Yule–Simon Model with Long-Term Memory. We now aim at
gaining a deeper insight into the phenomenology reported
above. To model the observed frequency-rank behavior for the
full range of ranking values, we introduce a new version of the
‘‘rich-get-richer’’ Yule–Simon’s stochastic model (14, 15) by
enhancing it with a fat-tailed memory kernel. The original model
can be described as the construction of a text from scratch. At
each discrete time step one word is appended to the text: with
probability p the appended word is a new word, never occurred
before, whereas with probability 1 � p one word is copied from
the existing text, choosing it with a probability proportional to its
current frequency of occurrence. This simple process yields
frequency-rank distributions that display a power-law tail with
exponent � � 1 � p, lower than the exponents we observe in
actual data. This happens because the Yule–Simon process has
no notion of ‘‘aging,’’ i.e., all positions within the text are
regarded as identical.

In our construction, we moved from the observation that
actual users are exposed in principle to all of the tags stored in
the system (like in the original Yule–Simon model) but the way
in which they choose among them, when tagging a new resource,
is far from being uniform in time (see also refs. 16 and 17). It
seems more realistic to assume that users tend to apply recently
added tags more frequently than old ones, according to a
memory kernel which might be highly skewed. Indeed, recent
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Fig. 3. Tagging activity: a time-ordered sequence of tagging events is graphically rendered by marking the tags cooccurring with blog (Upper) or ajax (Lower)
in an experimental sequence of posts on del.icio.us. In each panel, columns represent single tagging events (posts) and rows correspond to the 10 most frequent
tags cooccurring with either blog (Upper) or ajax (Lower). One hundred tagging events are shown in each panel, temporally ordered from left to right. Only posts
involving at least one of the 10 top-ranked tags are shown. For each tagging event (column), a filled cell marks the presence of the tag in the corresponding
row, whereas an empty cell indicates its absence. A qualitative difference between blog (Upper) and ajax (Lower) is clearly visible, where a higher density at
low-rank tags characterizes the semantically narrower ajax term. This corresponds to the steeper low-rank behavior observed in the frequency-rank plot for ajax
(Fig. 4).

Table 1. Statistics of the data sets used for the
cooccurrence analysis

Tag
No. of
posts

No. of
tags

No. of
distinct tags

No. of
resources

Blog 37,974 24,171 10,617 16,990
Ajax 33,140 108,181 4,141 2,995
Xml 24,249 108,013 6,035 7,364
H5N1 981 5,185 241 969

For each tag, we report the number of posts marked with that tag, the
number of total and distinct tags cooccurring with it, and the corresponding
number of resources. The data were retrieved during May of 2005.

ajax apple art article blog blogging blogs books browser business code community

computer cool css culture database design development diy download firefox

flash flickr framework free freeware fun gallery games google graphics hacks howto
html humor illustration images imported inspiration internet java javascript
library linux live mac media microsoft mp3 music network news online opensource osx

photo photography photos photoshop php portfol io productivi ty

programming python rails reference research resources rss ruby search

security social software tech technology tips   tool   tools toread   tutorial
tutorials ubuntu video web web2.0 webdesign webdev windows xml

Fig. 2. Example of a tag-cloud. A tag-cloud is a common way to visualize tags
belonging to a collaborative tagging system. Here, the font size of each tag is
proportional to the logarithm of its frequency of appearance within the
folksonomy.
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findings about human activities (12) support the idea that the
access pattern to the past of the system should be fat-tailed,
suggesting a power-law memory kernel.

We tested this hypothesis with real data extracted from
Del.icio.us: Fig. 5 shows the temporal autocorrelation function
for the sequence of tags cooccurring with blog. Such a sequence
is constructed by consecutively appending the tags associated
with each post, respecting the temporal order of posts. Corre-
lations are computed inside three consecutive windows of length
T, starting at different times tw,

C��t, tw� �
1

T � �t �
t�tw�1

t�tw�T��t

��tag�t � �t�, tag�t��,

where �(tag(t � �t), tag(t)) is the usual Kronecker delta
function, taking the value 1 when the same tag occurs at times
t and t � �t. From Fig. 5, it is apparent that the correlation
function is nonstationary over time. Moreover, for each value of
the initial time tw a power-law behavior is observed: C(�t, tw) �
a(tw)/(�t � �(tw)) � c(tw), where a(tw) is a time-dependent
normalization factor and �(tw) is a phenomenological time scale,
slowly increasing with the ‘‘age’’ tw of the system. c(tw) is the
correlation that one would expect in a random sequence of tags
distributed according to the frequency-rank distribution PT,tw(R)
pertaining to the relevant data window. Denoting by R � Rmax(T,
tw) the number of distinct tags occurring in the window [tw, tw �
T ], we have c(tw) � �R�1

R�Rmax(T,tw) PT,tw

2 (R).
Our modification of the Yule–Simon model thus consists in

weighting the probability of choosing an existing word (tag) ac-

cording to a power-law kernel. This hypothesis about the functional
form of the memory kernel is also supported by findings in cognitive
psychology (18), where power laws of latency and frequency have
been shown to model human memory.

In summary, our model of users’ behavior can be stated as
follows: the process by which users of a collaborative tagging
system associate tags to resources can be regarded as the
construction of a ‘‘text’’, built one step at a time by adding
‘‘words’’ (i.e., tags) to a text initially comprised of n0 words. This
process is meant to model the behavior of an effective average
user in the context identified by a specific tag. At a generic
(discrete) time step t, a brand new word may be invented with
probability p and appended to the text, whereas with probability
1 � p, one word is copied from the existing text, going back in

Fig. 4. Frequency-rank plots for tags cooccurring with a selected tag:
experimental data (black symbols) are shown for Del.icio.us (circles for tags
cooccurring with the popular tag blog, squares for ajax, and triangles for xml)
and Connotea (Inset, black circles for the H5N1 tag). For the sake of clarity, the
curves for ajax and xml are shifted down by one and two decades, respectively.
Details about the experimental data sets are reported in Table 1. All curves
exhibit a power-law decay for high ranks (a dashed line corresponding to the
power law R�5/4 is provided as an aid for eye) and a shallower behavior for low
ranks. To make contact with Fig. 3, some of the highest-frequency tags
cooccurring with blog and ajax are explicitly indicated with arrows. Red
symbols are theoretical data obtained by computer simulation of the stochas-
tic process described in the text (Fig. 6). The parameters of the model, i.e., the
probability p, the memory parameter �, and the initial number of words n0

were adjusted to match the experimental data, giving approximately p � 0.06,
� � 100, and n0 � 100 for blog, p � 0.03, � � 20, and n0 � 50 for ajax, and p �
0.034, � � 40, and n0 � 110 for xml. (Inset) Connotea is a much younger system
than del.icio.us, and the corresponding data set is smaller and noisier. Nev-
ertheless, a good match with experimental data can be obtained for p � 0.05,
� � 120, and n0 � 7 (red circles), demonstrating that our model also applies to
the early stages of development of a folksonomy. Gray circles correspond to
different realizations of the simulated dynamics.

Fig. 5. Tag–tag correlation functions and nonstationarity. The tag-tag
correlation function C(�t, tw) is computed over three consecutive and equally
long (T � 30,000 tags each) subsets of the blog data set, starting respectively
at positions tw

1 � 10,000, tw
2 � 40,000, and tw

3 � 70,000 within the collected
sequence. Short-range correlations are clearly visible, slowly decaying toward
a long-range plateau value. The nonstationary character of correlations is
visible both at short range, where the value of the correlation function decays
with tw, and at long range, where the asymptotic correlation increases with tw.
The long-range correlations (dashed lines) can be estimated as the natural
correlation present in a random sequence containing a finite number of tags:
on using the appropriate ranked distribution of tag frequencies within each
window (see text) the values c(tw

1 ), c(tw
2 ), and c(tw

3 ) can be computed, matching
the measured plateau of the correlation functions. The thick line is a fit to the
fat-tailed memory kernel described in the text.

t-x

Qt(x)

new
p

1-p

ln x

...t-9t-8t-7t-6t-5t-4t-3t-2t-1

Fig. 6. A Yule–Simon’s process with long-term memory. A synthetic stream
of tags is generated by iterating the following step: with probability p a new
tag is created and appended to the stream, whereas with probability 1 � p, a
tag is copied from the past of the stream and appended to it. The probability
of selecting a tag located x steps into the past is given by the long-range
memory kernel Qt(x), which provides a fat-tailed access to the past of the
stream.
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time by x steps with a probability Qt(x) that decays as a power law,
Qt(x) � a(t)/(x � �) (see Fig. 6). a(t) is a normalization factor,
and � is a characteristic time scale over which recently added
words have comparable probabilities. Fig. 4 shows the excellent
agreement between the experimental data and the numerical
predictions of our Yule–Simon model with long-term memory.
Our model, unsurprisingly, also reproduces the temporal corre-
lation behavior observed in real data.

The interpretation of � (similar to that of the � parameter
introduced above for tag-tag correlations) is related to the
number of equivalent top-ranked tags perceived by users as
semantically independent (see SI). In our model, in fact, the
average user is exposed to a few roughly equivalent top-ranked
tags and this is translated mathematically into a low-rank cutoff
of the power law, i.e., the observed low-rank flattening.

Fitting the parameters of the model to match its predictions
(obtained by computer simulation) against the experimental
data, we obtain an excellent agreement for all of the frequency-
rank curves we measured, as shown in Fig. 4. This is a clear
indication that the behavior encoded in our simple model is able
to capture some key features of the tagging activity. The
parameter � controls the number of top-ranked tags that are
allowed to cooccur with comparable frequencies, so that it can
be interpreted as a measure of the ‘‘semantic breadth’’ of a tag.
This picture is consistent with the fact that the fitted value of �
obtained for blog (a rather generic tag) is larger than the one
needed for ajax (a pretty specific tag). It is worth remarking that,
despite the agreement between the experimental data and our
model predictions, our simple modeling is an attempt toward the
modeling of user behaviors, not meant to be neither unique or
exclusive of other generative models (10, 11).

Discussion and Conclusions
Uncovering the mechanisms governing the emergence of shared
categorizations or vocabularies in absence of global coordination
is a key problem with significant scientific and technological
potential. Collaborative tagging provides a precious opportunity
to both analyze the emergence of shared conventions and inspire
the design of large (human or artificial) agent systems. Here we
report a statistical analysis of tagging activity in a popular social
bookmarking system, and introduce a simple stochastic model of
user behavior which is able to reproduce the measured cooc-
currence properties to a surprisingly level of accuracy. Our
results suggest that users of collaborative tagging systems share
universal behaviors that, despite the intricacies of personal
categorization, tagging procedures, and user interactions, appear
to follow simple activity patterns. In addition to the findings
reported and discussed in this paper, our approach constitutes a

starting point upon which more cognitively informed studies can
be based, with the final goal of understanding and engineering
the semiotic dynamics of online social systems.

Experimental Data
Our analysis focuses on Del.icio.us, for several reasons: (i) it was
the first system to deploy the ideas and technologies of collab-
orative tagging, and the paradigmatic character it acquired
makes it a natural starting point for any quantitative study. (ii)
Because of its popularity, it has a large community of active users
and comprises a precious body of raw data on the static and
dynamical properties of a folksonomy. (iii) It is a broad folk-
sonomy (as Thomas Vander Wal argued, www.personalinfo-
cloud.com/2005/02/explaining�and�.html), and single tagging
events (posts) retain their identity and can be individually
retrieved. This affords unimpeded access to the ‘‘microscopic’’
dynamics of collaborative tagging, providing the opportunity to
make contact between emergent behaviors and low-level dy-
namics. It also allows to define and measure the multiplicity (or
frequency) of tags in the context of a single resource. Contrary
to this, popular sites falling in the narrow folksonomy class
(Flickr, for example) foster a different model of user interaction,
where tags are mostly applied by the content creator, no notion
of tag multiplicity is available in the context of a resource, and
no access is given to the raw sequence of tagging events.

On studying Del.icio.us, we adopt a tag-centric view of the
system; i.e., we investigate the evolving relationship between a
given tag and the set of tags that cooccur with it. In line with our
focus on semiotic dynamics, we factor out the detailed identity
of the users involved in the process, and only deal with streams
of tagging events and their statistical properties. To perform
automated data collection of raw data we use a custom web
(HTTP) client that connects to Del.icio.us and navigates the
system’s interface as an ordinary user would do, extracting the
relevant metadata and storing it for further postprocessing.
Del.icio.us allows the user to browse its content by tag: our client
requests the web page associated with the tag under study and
uses an HTML parser to extract the post information (user,
resource, tags, time stamp) from the returned HTML code. Fig.
3 graphically depicts the raw data we gather, for the case of two
popular tags on Del.icio.us. Table 1 describes the data sets we
used for the present analysis.
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