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Abstract. — The Yule-Simon model has been used as a tool to describe the growth of
diverse systems, acquiring a paradigmatic character in many fields of research. Here we study
a modified Yule-Simon model that takes into account the full history of the system by means
of a hyperbolic memory kernel. We show how the memory kernel changes the properties
of preferential attachment and provide an approximate analytical solution for the frequency
distribution density as well as for the frequency-rank distribution.

In 1925 Yule [1] proposed a model to explain experimental data on the abundances of bio-
logical genera [2]. Thirty years later, Simon introduced an elegant copy and growth model [3],
in spirit equivalent to Yule’s model, to explain the observed power law distribution of word
frequencies in texts [4-6]. In Simon’s growth model, new words are added to a text (more
generally a stream) with constant probability p at each time step, whereas with complemen-
tary probability p = 1 — p an already occurred word is chosen uniformly from within the
already formed text (stream). This model yields a power law distribution density for word
frequencies P(k) ~ k=" with 3 = 1+ 1/p . The same mechanism is at play in the pref-
erential attachment (PA) model for growing networks proposed, in their pioneering article,
by Barabdsi and Albert [7]. In that case, a network is constructed by progressively adding
new nodes and linking them to existing nodes with a probability proportional to their current
connectivity. Yule-Simon processes and PA schemes are closely related to each other and a
mapping between them has been provided by Bornholdt and Ebel [8].

In the original Yule-Simon process, the metaphor of text construction is somehow mis-
leading because in that process there is no notion of temporal ordering. All existing words
are equivalent and in many respects everything goes as in a Polya urn model [9]. However,
the notion of temporal ordering may play an important role in determining the dynamics of
many real systems. In this perspective it is interesting to investigate models where temporal
ordering is explicitly taken into account. A first attempt in this direction has been provided
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Fig. 1 — Yule-Simon process with a fat-tailed memory kernel.
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by Dorogovtsev and Mendes (DM) [10], who studied a generalization of the Barabdsi-Albert
model by introducing a notion of aging for nodes. Each node carries a temporal marker
recording its time of arrival into the network, and its probability to be linked to newly added
nodes is proportional to its current connectivity weighted by a power law of its age. Another
recent example has been proposed in [11] in relation with the very new phenomenon of collab-
orative tagging [12]: new web sites appeared where users independently associate descriptive
keywords —called tags— with disparate resources ranging from web pages to photographs. A
sort of tag dynamics develops, eventually yielding a fat-tailed distribution of tag frequencies.
In order to explain such phenomenology, a generalization of the Yule-Simon process has been
introduced [11], which explicitely takes into account the time ordering of tags. Specifically, a
hyperbolic memory kernel has been introduced to weight the probability of copying an existing
tag, affording a remarkable agreement with experimental data.

In this letter we show that the memory kernel induces a non-trivial change of the properties
of PA with respect to the original Yule-Simon process as well as to the DM model with aging.
Moreover, we analytically investigate the generalization of the Yule-Simon model and provide
an approximate solution for the frequency distribution density as well as for the frequency-rank
distribution.

The model we investigate is defined as follows. We start with ng words. At every time
step t a new word may be invented with probability p and appended to the text, while with
probability p = 1 — p one word is copied from the text, going back in time by i steps with
a probability that decays with i as Q(i) = f_(:y), as shown in fig. 1. C(¢) is a logarithmic
time-dependent normalization factor and 7 is a characteristic time-scale over which recently
added words have comparable probabilities.

The first important observation concerns the deviations of our model from the pure PA
rule of the original Yule-Simon model. An elegant and efficient way to check for deviations
from PA was suggested by Newman [13]. In Simon’s model, the probability of choosing an
existing word, which already occurred k times at time ¢, is pkn(k,t), where m(k,t) is the
fraction of words with frequency k at time ¢. In order to ascertain whether a PA mechanism
might be at work, we construct the histogram of the frequencies of words that have been
copied, weighting the contribution of each word according to the factor 1/mw(k,t¢). If this
histogram displays a direct proportionality to the frequency k, then one might be observing a
PA-driven growth. For our model, the numerical results in fig. 2 show that the chosen form of
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Fig. 2 — Deviations from the preferential attachment rule (Simon’s model), in the case of our model
and DM model. For all curves, p = 0.4 and 10° steps were simulated. Finite-size effects are responsible
for the drop at high frequencies, as extensively discussed in ref. [13].

the memory kernel leads to a sub-linear attaching probability. The same kind of sub-linearity
has been observed in the growth dynamics of the Wikipedia network [14]. Conversely, the DM
model with hyperbolic kernel (a limiting case for the analysis of ref. [10]) displays no clear
dependence on k.

In order to get a deeper insight into the phenomenology of the model we present an analyt-
ical study aimed at computing the approximate functional form of the probability distribution
of word frequencies as well as the corresponding frequency-rank distribution. In the following
we shall write the normalization factor as C, with no explicit mention of its time dependence.
We also define a(t) = pC(t), and we will similarly refer to it as a. We assume that word X
occurred at time ¢ for the first time, and we ask what is the probability P(At) that the next
occurrence of X happens at time ¢ + At, with At > 1.

If At =1, P(At) is the probability of replicating the previous word, i.e. the product be-
tween the probability p of copying an old word, and the probability of choosing the immediately
preceding word (¢ = 1) computed according to the chosen memory kernel, Q(1) = C/(7 + 1).
This gives

pC  «
T+1 71417

pP) = (1)

For At > 1, P(At) can be computed as the product of the probabilities of not choosing
word X for At — 1 consecutive steps, multiplied by the probability of choosing word X at
step At. In order not to choose word X at the first step, one has to either append a new
word (probability p) or copy an existing word (probability p) which is not X (probability
1-C/(r+1)).

Finally, under the approximation that C' is constant from step to step, i.e. At < t, we
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can write the return probability as the product
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Taking the logarithm of P(At), we can write the above product as the sum

A1 o
In P(At) = — 1
nP(A) a;T—i—i—i_nT—i—At’ 3)

where we used the fact that a < 1 for ¢t > 1.
By using the approximate expression In P(At) = flAt(ln P(At +1) —In P(At)) dAY, we
obtain
P(At) ~ a1 +7)*(1 + At) ! (4)

derived under the assumption that ¢t > At > 1. The estimated value of P(At) depends on
time through «, so that the probability distribution of intervals At¢, which turns out to be
correctly normalized, is non-stationary.
We now focus, for simplicity, on the case 7 = 0. At any given time ¢, the characteristic return
time (At) can be computed by using eq. (4):
‘ o
At) = P(At) At ~ ——
(A= 37 P(A) AL~

th=o (5)
At=1 o

In a continuum description the frequency k; of a given word 7 will change according to the
rate equation
dk;
=pll;, 6
g — Pl (6)
where II; is the probability of picking up a previous occurrence of word i. With our choice of
the memory kernel, the exact value of II; is given by the sum

5 (7)

where ty) (j =1,2,...,k;) are the times of occurrence of word i.
We adopt a mean-field approach and assume that the above sum can be written as the
frequency k; times the average value of the term (¢ — t;z))_l over the occurrence times tgl).
As shown in fig. 3a, this is supported by numerical evidence, so that we can write (dropping
the word index (i) from here onward):

j=ki

1 1
II, = ~ ;
; Czt_tj Ok:l<t_tj>j, (8)

j=1

where (); denotes the average over the k; occurrences of word ¢. Furthermore, we assume
that the average is dominated by the contribution of the most recent occurrence of word i, at
time t,: ((t —t;)7'); ~ (t — tg,)~'. We replace t — t), with the typical return interval for
word 4, and use eq. (5) to estimate the latter, obtaining:

1 1 1 l—a 1
<t —t; >j t—tr, (At) a oo’ ©)
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Fig. 3 — a) Rate II; of eq. (7), for a given word ¢ having frequency k; at time ¢ (p = 0.05, no = 10,
t = 30000). b) Memory kernel of eq. (10) averaged over the times of occurrence t; and over about
2000 realizations of the process (p = 0.05, np = 10, t = 5-10%,10%,2-10*,3 - 10,5 - 104). Values are
shown for a word of given frequency k = 200 (circles), a word of frequency k = 500 (crosses) and for
the average over all frequencies (squares). Numerical error bars are within the size of data markers.
The two curves are obtained by fitting © in eq. (10) against numerical data. The fitted continuous
line sets the value of © used from eq. (11) onwards.

which has a (sub-linear, since o 2 0) power law dependence on ¢ and a slower (logarithmic)
time dependence through «a. Figure 3b shows that the above expression captures the correct
temporal dependence of the average ((t —t;)!) for a given frequency k;, provided that a
constant factor (2 is introduced, as follows:

1 1 1—a 1
~ . , 10
<t—tj>j Q o to (10)

The need for a corrective factor € is a consequence of our simplifying assumptions, namely our
mean-field approximation, the fact that we ignored all occurrences of word i but the very last,
and the approximations underlying our estimate of the return time At. Moreover, as shown in
fig. 3b, Q depends on the frequency k; of the selected word 7. In order to keep only the linear
dependence of the kernel on k; we approximate () with its average value over k, numerically
estimated as 2 ~ 1.52 (see fig. 3b). While this is certainly a rather crude approximation, it
appears to work remarkably well, as we will show in the following (figs. 4 and 5).
We introduce eq. (10) and eq. (8) into the rate eq. (6), obtaining:

dk; 1 ki
— ~ak; ==.(1-a)-t>1. 11
t akl<t_tj>j ) (11)

We integrate eq. (11), again neglecting the slow time dependence of «, from time t;, when
word 4 appeared for the first time (with frequency 1) up to the final time ¢, when word ¢ has
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Fig. 4 — Frequency probability distribution density P(k) of word occurrence. Numerical data (circles,
averaged over 50 realizations and binned) are in very good agreement with eq. (14) (solid line)
(p = 0.05, ng = 10, ¢ = 30000, 2 = 1.52). The dashed line is provided as a guide for the eye.

Fig. 5 — Frequency-rank distribution P(R). Upper curves: numerical data (circles, averaged over 50
realizations) are compared against the prediction of eq. (15) (solid line) (p = 0.05, no = 10, t = 30000,
Q = 1.52). Here the value of Q is univocally set by our numerics, as explained in fig. 3b. Lower curves
(shifted one decade downwards): a single realization of our process (squares) is fitted with respect to
Q2 against eq. (15) (dashed line), yielding € = 1.46.

k; / t
tdk! 11—« a—1
b= . dv' ¢’ ) 12
/1 K0 / 12)

i

reached frequency k;,

Performing the integration we get the stretched exponential dependence

1— 1— o
k; = exp [Q—aa t“} - exp {— Qaa t;’} = Ae Kt (13)

where K = 152 and A = Kt
The probability distribution density for word frequencies P(k) can now be computed as [15,

16]
_ P In(A/k)] "~
PO = o | K] -

and is in very good agreement with numerical evidence, as shown in fig. 4 (upper curves), where
it is worth noticing that the value of 2 is univocally set by our numerics. The corresponding
frequency-rank distribution is

pim= A [ ae(T)] -

Figure 5 shows that the above equation is in fair agreement with numerical evidence.

In this letter we have shown how the introduction of a memory kernel drastically changes
the properties of PA with respect of the original Yule-Simon process as well as the Dorogovtsev-
Mendes model with aging [10].

In order to assess the role of the memory kernel we have presented a continuum approach to
a modified Yule-Simon model. The presence of a long-term memory kernel makes the rigorous
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treatment non-trivial. Our approach makes use of some assumptions (sometimes rough, but
numerically verified) concerning especially the functional form of the averaged memory kernel,
both as a function of time and of word frequency. We require a single phenomenological pa-
rameter ({2), for which we presently have no theoretical estimates. Nevertheless our approach
affords an excellent agreement between analytical and numerical results for the probability
distribution density P(k). The frequency-rank distribution P(R) appears to be much more
sensitive to the approximations we made, but the agreement between numerics and theory
is nevertheless reasonable. This is somehow the signature that our theoretical treatment is
capturing some of the important statistical features of the model.

We wish to remark that the frequency probability density P(k) displayed by the model
(fig. 4) could be easily confused with a power law behavior with exponent —2, as in the original
Yule-Simon model with p < 1, and a simple PA mechanism could be inferred. Instead, as
shown for the case at hand, more refined indicators (e.g. that of fig. 2) can tell apart different
underlying mechanisms of growth. This should be read as a general warning against reading
an apparent power law behavior for the P(k) as the signature of a PA mechanism at play.

The approach described here could be extended to the more complex case of 7 # 0.
In this respect, several problems remain open: does 7 induce a relevant time-scale? Is it
asymptotically relevant or does it only affect the dynamics on short time-scales? Does the
limit 7 > ¢ fall in the same universality class of the Yule-Simon model without memory?
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